Las nanopartículas bimetálicas y algunas de sus aplicaciones

  • Antonio Aguilar-Tapia
  • Rodolfo Zanella
Palabras clave: nanomateriales, partículas bimetálicas, aplicaciones

Resumen

En las últimas décadas ha habido un enorme interés por el estudio de las nanopartículas bimetálicas debido a su potencial en distintos campos de aplicación, ya que normalmente presentan propiedades mejoradas respecto a las de los componentes individuales por separado. El control efectivo del tamaño, forma, arquitectura y composición de los metales en las partículas juegan un papel muy importante en la mejora de sus características, de las cuales dependen sus múltiples aplicaciones, desde la catálisis (posiblemente el área en que más se han estudiado y aplicado las partículas bimetálicas) hasta su uso como biosensores o en aplicaciones biomédicas.

Citas

Aguilar–Tapia, A. et al. (2016). Selective hydrogenation of 1,3–butadiene over bimetallic Au-Ni/TiO2 catalysts prepared by deposition–precipitation with urea. Journal of Catalysis, vol. 344, núm. 3, 515–523.

Aguilar–Tapia, A. et al. (2015). Synergistic effects of Ir–Au/TiO2 catalysts in the total oxidation of propene: Influence of the activation conditions. Physical Chemistry Chemical Physics, vol. 17, núm. 42, 28022–28032.

Ahmed, M. U., Hossain, M. M. y Tamiya, E. (2008). Electrochemical biosensors for medical and food applications. Electroanalysis, vol. 20, núm. 6, 616–626.

Alayoglu, S. et al. (2011). Surface Composition and Catalytic Evolution of AuxPd1−x (x = 0.25, 0.50 and 0.75) Nanoparticles Under CO/O2 Reaction in Torr Pressure Regime and at 200 °C. Catalysis Letters, vol. 141, núm. 5, 633–640.

Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, vol. 271, núm. 5251, 933–937.

Antolini, E. (2007). Catalysts for direct ethanol fuel cells. Journal of Power Sources, vol. 170, núm. 1, 1–12.

Antolini, E. y Gonzalez, E. R. (2010). Alkaline direct alcohol fuel cells. Journal of Power Sources, vol. 195, núm. 11, 3431–3450.

Arnold, M. A. y Meyerhoff, M. E. (1988). Recent advances in the development and analytical applications of biosensing probes. Critical Reviews Analytical Chemistry, vol. 20, núm. 3, 149–196.

Balcha, T. et al. (2011). Selective aerobic oxidation of crotyl alcohol using AuPd core– shell nanoparticles. ACS Catalysis, vol. 1, núm. 5, 425–436.

Banadaki, A. D. y Kajbafvala, A. (2014). Recent advances in facile synthesis of bimetallic nanostructures: An overview. Journal of Nanomaterials, vol. 2014, 1–28.

Banin, U. (2007). Nanocrystals: Tiny seeds make a big difference. Nature Materials, vol. 6, núm. 9, 625–626.

Barry, R. C. et al. (2009). Nanotechnology–based electrochemical sensors for biomonitoring chemical exposures. Journal of Exposure Science and Environmental Epidemiology, vol. 19, núm. 1, 1–18.

Busch, W. (1867). Aus der sitzung der medicinischen. Berl KlinWochenschr, vol. 13, núm. 5, 137.

Cabrera, L. et al. (2008). Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim Acta, vol. 53, núm. 8, 3436–3411.

Cao, S. et al. (2012). An integrated sensing system for detection of cholesterol based on TiO2–graphene–Pt–Pd hybrid nanocomposites. Biosensors and Bioelectronics, vol. 42, 532–538.

Cao, S. et al. (2013). Electrochemistry of cholesterol biosensor based on a novel Pt–Pd bimetallic nanoparticle decorated graphene catalyst. Talanta, vol. 109, 167–172.

Carta, D. et al. (2010). Synthesis and microstructure of manganese ferrite colloidal nanocrystals. Physical Chemistry Chemical Physics, vol. 12, núm. 19, 5074–5083.

Chiriac, H. et al. (2015). In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field. Journal of Magnetism and Magnetic Materials, vol. 380, 13–19.

Chiti, G., Marrazza, G. y Mascini, M. (2001). Electrochemical dna biosensor for environmental monitoring. Analytica Chimica Acta, vol. 427, núm. 2, 155–164.

Coley, W. B. (1891). Contribution to the knowledge of sarcoma. Annals of Surgery, vol. 14, núm. 3, 199–220.

Connelly, J. T. y Baeumner, A. J. (2011). Biosensors for the detection of waterborne pathogens. Analytical and Bioanalytical Chemistry, vol. 402, núm. 1, 117–127.

Deisingh, A. K. y Thompson, M. (2004). Biosensors for the detection of bacteria. Canadian Journal of Microbiology, vol. 50, núm. 2, 69–77.

Deplanche, K. et al. (2012). Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. Journal of The Royal Society Interface, vol. 9, núm. 72, 1705–1712.

Duan, M.–Y. et al. (2013). Self–assembly of Au–Pt core–shell nanoparticles for effective enhancement of methanol electrooxidation. Electrochimica Acta, vol. 87, 432–437.

Eslami–Farsani, R. et al. (2012). Mechanical characterization of nanoclay reinforced polypropylene composites at high temperature subjected to tensile loads. Advanced Materials Research, vol. 488–489, 567–571.

Fantechi, E. et al. (2012). Exploring the effect of co doping in fine maghemite nanoparticles. Journal of Physical Chemistry C, vol. 116, núm. 14, 8261–8270.

Ferrando, R., Jellinek, J. & Johnston, R. L. (2008). Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chemical Reviews, vol. 108, núm. 3, 845–910.

Fu, G.–T. et al. (2014). Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale, vol. 6, núm. 21, 12310–12314.

Galindo, R. et al. (2012). Electrochemical synthesis of NiFe2O4 nanoparticles: Characterization and their catalytic applications. Journal of Alloys and Compound, vol. 536, S241–S244.

Gao, Q. et al. (2013). Shape–controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties. ChemSusChem, vol. 6, núm. 10, 1878–1882.

Ge, Q. et al. (1998). Bifunctional catalysts for conversion of synthesis gas to dimethyl ether. Applied Catalysis A: General, vol. 167, núm. 1, 23–30.

Godínez–Salomón, F., Hallen–López, M. y Solorza–Feria, O. (2012). Enhanced electroactivity for the oxygen reduction on Ni@Pt core–shell nanocatalysts. International Journal of Hydrogen Energy, vol. 37, núm. 19, 14902–14910.

Han, Z. et al. (2014). Propane dehydrogenation over Pt–Cu bimetallic catalysts: The nature of coke deposition and the role of copper. Nanoscale, vol. 6, núm. 17, 10000–10008.

Harikumar, K. R., Ghosh, S. y Rao, C. N. R. (1997). X–ray photoelectron spectroscopic investigations of Cu–Ni, Au–Ag, Ni–Pd, and Cu–Pd bimetallic clusters. Journal of Physical Chemistry A, vol. 101, núm. 4, 536–540.

Hervault, A. y Thanh, N. T. K. (2014). Magnetic nanoparticle–based therapeutic agents for thermo–chemotherapy treatment of cancer. Nanoscale, vol. 6, núm. 20, 11553–11573.

Hosseini, M. et al. (2012). Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of voc: The effect of metal deposition. Applied Catalysis B: Environmental, vol. 111–112, 218–224.

Jacobs, M. et al. (2013). An electrochemical sensor for the detection of antibiotic contaminants in water. Analytical Methods, vol. 5, núm. 17, 4325–4329.

Kodama, D., Shinoda, K. y Sato, K. (2006). Chemical synthesis of sub–micrometerto nanometer–sized magnetic FeCo Dice. Advanced Materials, vol. 18, núm. 23, 3154–3159.

Kress–Rogers, E. (1996). Handbook of biosensors and electronic noses: Medicine, food, and the environment, Nueva York, NY, USA: CRC Press Inc.

Kress–Rogers, E. y Brimelow, C. J. B. (2001). Instrumentation and sensors for the food industry, 2a ed., Cambridge, UK: Woodhead.

Kumar, S. et al. (2015). Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosensors and Bioelectronics, vol. 70, 498–503.

Lavecchia, T., Tibuzzi, A. y Giardi, M. T. (2010). Biosensors for functional food safety and analysis. Bio-farms. Advances in Experimental Medicine and Biology, vol. 698, 267–281.

Lee, J.–H. et al. (2007). Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, vol. 13, núm. 1, 95–99.

Lee, J.–H. y Gu, M. B. (2005). An integrated mini biosensor system for continuous water toxicity monitoring. Biosensors and Bioelectronics, vol. 20, núm. 9, 1744–1749.

Lim, B. et al. (2009). Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, vol. 324, núm. 5932, 1302–1305.

Lu, L.–Y. et al. (2013). Monodisperse magneticmetallic nanoparticles: Synthesis, performance enhancement, and advanced applications. Rare Metals, vol. 32, núm. 4, 323–331.

Mallin, M. P. y Murphy, C. J. (2002). Solution–phase synthesis of sub–10nm Au–Ag alloy nanoparticles. Nano Letters, vol. 2, núm. 11, 1235–1237.

Marin, S. y Merkoci, A. (2012). Nanomaterials based electrochemical sensing applications for Safety and Security. Electroanalysis, vol. 24, núm. 3, 459–469.

Mary, J. A. et al. (2014). Structure and magnetic properties of Cu–Ni alloy nanoparticles prepared by rapid microwave combustion method. Transactions of Nonferrous Metals Society of China, vol. 24, núm. 5, 1467–1463.

Massicot, F. et al. (2000). Synergistic effect in bimetallic Ni-Al clusters. Application to efficient catalytic reductive dehalogenation of polychlorinated arenes. Tetrahedron, vol. 56, núm. 27, 4765–4768.

Mayer, K. M. & Hafner, J. H. (2011). Localized surface plasmon resonance sensors. Chemical Reviews, vol. 111, 3828–3857.

Mazario, E. et al. (2013). Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. Journal of Physical Chemistry C, vol. 117, núm. 21, 11405–11411.

Mazario, E. et al. (2012). Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology, vol. 23, núm. 35, 355708–355713.

Mazario, E. et al. (2015). High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route. Journal of Physical Chemistry C, vol. 119, núm. 12, 6828–6834.

McNamara, K. y Tofail, S. A. M. (2015). Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Physical Chemistry Chemical Physics, vol. 17, núm. 42, 27981–27995.

Mu, R., Fu, Q. y Xu, H. (2011). Synergetic effect of surface and subsurface Ni species at Pt–Ni bimetallic catalysts for CO oxidation. Journal of American Chemical Society, vol. 133, núm. 6, 1978–1986.

Nagaraj, V. J. et al. (2014). Nanochannel-based electrochemical sensor for the detection of pharmaceutical contaminants in water. Environmental Science: Processes & Impacts, vol. 16, núm. 17, 135–140.

Nutt, M. O., Hughes, J. B. y Wong, M. S. (2006). Designing Pd on–Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environmental Science and Technology, vol. 39, núm. 5, 1346–1353.

Patel, P. D. (2002). (Bio)sensors for measurement of analytes implicated in food safety: A review. TrAC Trends in Analytical Chemistry, vol. 21, núm. 2, 96–115.

Ponec, V. (2001). Alloy catalysts: The concepts. Applied Catalysis A: General, vol. 222, núm. 1–2, 31–45.

Pundir, C. S. y Narang, J. (2013). Determination of triglycerides with special emphasis on biosensors: A review. International Journal of Biological Macromolecules, vol. 61, 379–389.

Qureshi, A., Gurbuz, Y. y Niazi, J. H. (2012). Biosensors for cardiac biomarkers detection: A review. Sensors and Actuators B: Chemical, vol. 171–172, 62–76.

Rabis, A., Rodriguez, P. y Schmidt, T. J. (2012). Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catalysis, vol. 2, núm. 5, 864–890.

Ratinac, K. R. et al. (2011). Graphene and related materials in electrochemical sensing. Electroanalysis, vol. 23, núm. 4, 803–826.

Reddy, L. H. et al. (2012). Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews, vol. 112, núm. 11, 5818–5878.

Ren, X. et al. (2000). Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, vol. 86, núm. 1–2, 111–116.

Renzas, J. R. et al. (2011). Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: Catalytic activity enhancement in bimetallic systems. Physical Chemistry Chemical Physics, vol. 13, núm. 7, 2556–2562.

Rhemrev–Boom, M. M. et al. (2001). A versatile biosensor device for continuous biomedical monitoring. Biosensors and Bioelectronics, vol. 16, núm. 9–12, 839–847.

Rick, J., Tsai, M. y Hwang, B. (2016). Biosensors incorporating bimetallic nanoparticles. Nanomaterials, vol. 6, núm. 1, 1–30.

Rodriguez–Mozaz, S. et al. (2004). Biosensors for environmental monitoring of endocrine disruptors: A review article. Analytical and Bioanalytical Chemistry, vol. 378, 588–598.

Roduner, E. (2006). Size matters: Why nanomaterials are different. Chemical Society Reviews, vol. 35, núm. 7, 583–592.

Ronkainen, N. J., Halsall, H. B. y Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, vol. 39, núm. 5, 1747–1763.

Rui, H. et al. (2010). Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Advanced Materials, vol. 22, núm. 25, 2729–2742.

Safavi, A. y Farjami, F. E. (2011). Electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosensors and Bioelectronics, vol. 26, núm. 5, 2547–2552.

Sandoval, A. et al. (2011). Bimetallic Au–Ag/TiO2 catalyst prepared by deposition – precipitation : High activity and stability in CO oxidation. Journal of Catalysis, vol. 281, núm. 1, 40–49.

Sandoval, A., Louis, C., Zanella, R. (2013). Improved activity and stability in CO oxidation of bimetallic Au–Cu/TiO2 catalysts prepared by deposition–precipitation with urea, Applied Catalysis B vol. 140-141, 363-377.

Sankar, M. et al. (2012). Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, vol. 41, 8099–8139.

Sau, T. K. y Rogach A. L. (2010). Nonspherical noblemetal nanoparticles: Colloidchemical synthesis and morphology control. Advanced Materials, vol. 22, núm. 16, 1781–1804.

Scott, R. W. J., Datye, A. K. y Crooks, R. M. (2003). Bimetallic palladium–platinum dendrimer–encapsulated catalysts. Journal of American Chemical Society, vol. 125, núm. 13, 3708–3709.

Shao, Y. Y. et al. (2010). Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, vol. 22, núm. 10, 1027–1036.

Silke, B. et al. (2006). Surface engineering of Co and FeCo nanoparticles for biomedical application. Journal of Physics: Condensed Matter, vol. 18, núm. 38, S2543–S2561.

Slanac, D. A. et al. (2012). Atomic ensemble and electronic effects in Ag–Rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media. Journal of American Chemical Society, vol. 134, núm. 23, 9812–9819.

Sobal, N. S. et al. (2003). Synthesis of core-shell PtCo nanocrystals. Journal of Physical Chemistry B, vol. 107, núm. 30, 7351–7354.

Somorjai, G. A., Tao, F. y Park, J. Y. (2008) The Nanoscience revolution: Merging of colloid science, catalysis and nanoelectronics. Topics in Catalysis, vol. 47, núm. 1, 1–14.

Suo, Z. et al. (2011). Structure and activity of Au–Pd/SiO2 bimetallic catalyst for thiophene hydrodesulfurization. Fuel Processing Technology, vol. 92, núm. 8, 1549–1553.

Tan, Q. et al. (2012). Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation. Journal of Catalysis, vol. 295, 217–222.

Tao, F. et al. (2010). Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. Journal of American Chemical Society, vol. 132, núm. 25, 8697–8703.

Tao, F. et al. (2008). Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science, vol. 322, núm. 5903, 932–934.

Tao, F. (2012). Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chemical Society Reviews, vol. 41, núm. 41, 7977–7979.

Tiwari, J. N. et al. (2013). Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy, vol. 2, núm. 5, 553–578.

Toshima, N. y Yonezawa, T. (1998). Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry, vol. 22, núm. 11, 1179–1201.

Wang, A. et al. (2013). Understanding the synergistic effects of gold bimetallic catalysts. Journal of Catalysis, vol. 308, 258–271.

Wang, D. et al. (2008). Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. Journal of American Chemical Society, vol. 130, núm. 12, 4016–4022.

Wang, J. (2006). Electrochemical biosensors: Towards point–of–care cancer diagnostics. Biosensors and Bioelectronics, vol. 21, núm. 10, 1887–1892.

Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, vol. 108, núm. 2, 814–825.

Wang, J. L. et al. (2013). Advances in nano–scaled biosensors for biomedical applications. The Analyst, vol. 138, núm. 16, 4427–4435.

Publicado
2018-01-10
Cómo citar
Aguilar-Tapia, A., & Zanella, R. (2018). Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 10(19), 72-92. https://doi.org/10.22201/ceiich.24485691e.2017.19.61783
Sección
Artículos de investigación

Artículos más leídos del mismo autor/a