Síntesis de catalizadores bimetálicos Au-Sn/TiO2 y su aplicación en la reacción de oxidación de CO

  • Viridiana Maturano-Rojas Universidad Nacional Autónoma de México Instituto de Ciencias Aplicadas y Tecnología
  • Rodolfo Zanella Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología http://orcid.org/0000-0002-2118-5898
Palabras clave: catalizador bimetálico, oxidación de CO, oro, estaño, aleación

Resumen

En este trabajo se presenta el estudio de la síntesis de catalizadores bimetálicos Au-Sn/TiO2 mediante el método de depósito precipitación con urea (DPU), a través de dos procedimientos: el depósito secuencial y el co-depósito. Los materiales fueron preparados usando Na2O3Sn•3H2O y SnCl2 como precursores de estaño y HAuCl4•3H2O como precursor de oro. En el caso de los catalizadores preparados por DPU secuencial se realizaron algunas modificaciones que incluyen el orden en que se depositan los metales y un tratamiento térmico intermedio con aire o H2. Por otra parte, una serie de cuatro catalizadores fue preparada por co-depósito variando la relación molar Au:Sn. Todos los materiales fueron evaluados en la reacción de oxidación de CO y caracterizados por diferentes técnicas espectroscópicas y microscopía electrónica de transmisión (TEM) con la finalidad de estudiar la influencia de la metodología empleada en la síntesis, la selección de los precursores y las condiciones de activación en su comportamiento catalítico.

Biografía del autor/a

Rodolfo Zanella, Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología

Director del Instituto de Ciencias Aplicadas y Tecnología, UNAM,  Jefe del Laboratorio Universitario de Nanotecología Ambiental (LUNA), UNAM

Citas

Aguilar-Tapia, A., Zanella, R. (2017). Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano, 10(19): 72-92. http://dx.doi.org/10.22201/ceiich.24485691e.2017.19.61783

Aiqin, W., Xiao, Y. L., Chung-Yuan, M., Tao, Z. (2013). Understanding the synergistic effects of gold bimetallic catalysts. Journal of Catalysis, 308: 258-271. http://dx.doi.org/10.1016/j.jcat.2013.08.023

Broquvist, P., Molina, L. M., Gronbecka, H., Hammer, B. (2004). Promoting and poisoning effects of Na and Cl co-adsorption on CO oxidation over MgO-supported Au nanoparticles. Journal of Catalysis, 227: 217-226. http://doi.org/10.1016/j.jcat.2004.07.009

Caudillo-Flores, U., Muñoz-Bautista, M. J., Fernández-García, M., Kubacka, A. (2018). Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and visible light illumination. Applied Catalysis B: Environmental, 238: 533-545. http://dx.doi.org/10.1016/j.apcatb.2018.07.047

Chakarova, K., Mihaylov, M., Ivanova, S., Centeno, M. A., Hadjiivanov, K. (2011). Well-defined negatively charged gold carbonyls on Au/SiO2. Journal of Physical Chemistry C, 115: 21273-21282. http://dx.doi.org/10.1021/jp2070562

Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants: Part A, 25(3): 241-258. http://dx.doi.org/10.1080/02652030701744538

Chen, Z., Della, C., Falletta, E., Lo M., Pasta, M., Rossi, M., Santo, N. (2008). Facile synthesis of polyaniline using gold catalyst. Journal of Catalysis, 259(1): 1-4. http://dx.doi.org/10.1016/j.jcat.2008.07.006

Combita, D., Concepción, P., Corma, A. (2014). Gold catalysis for the synthesis of aromatic azocompounds from nitroaromatics in one step. Journal of Catalysis, 311: 339-349. http://dx.doi.org/10.1016/j.jcat.2013.12.014

Corti, C. W., Holliday, R. J., Thomson, D. T. (2007). Progress towards the commercial application of gold catalysts. Topics in Catalysis, 44(1-2): 331-343. http://dx.doi.org/10.1007/s11244-007-0307-7

Darabdhara, G., Das, M. R. (2018). Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water. Chemosphere, 197: 817-829. http://dx.doi.org/10.1016/j.chemosphere.2018.01.073

Delannoy, L., Chantry, R. L., Casale, S., Li, Z. Y., Borensztein, Y., Louis, C. (2013). HRTEM and STEM-HAADF characterization of Au/TiO2 and Au/Al2O3 catalysts for a better understanding of the parameters influencing their properties in CO oxidation. Physical Chemistry Chemical Physics, 15: 3473-3479. http://dx.doi.org/10.1039/C2CP44157H

Dien, L., Ishida, T., Taketoshi, A., Truong, D., Chinh, H., Honma, T., Murayama, T., Haruta, M. (2019). Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size. Applied Catalysis B: Environmental, 241: 539-547. http://dx.doi.org/10.1016/j.apcatb.2018.09.053

Freakley, S., He, Q., Harry, J., Lu, L., Crole, D., Morgan, D., Ntainjua, E., Edwards, J., Carley, A., Borisevich, A., Kiely, C., Hutchings, G. (2016). Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science, 351(6276): 965-8, febrero 26. http://dx.doi.org/10.1126/science.aad5705

Gallo, A., Psaro, R., Guidotti, M., Dal Santo, V., Della Pergola, R., Masih, D., Izumi, Y. (2013). Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: a spectroscopic study. Dalton Transactions, 42: 12714-12724. http://dx.doi.org/10.1039/C3DT51144H

Ghazi, Y., Haddadi, F., Kamaladini, H. (2018). Gold nanoparticle biosensors, a novel application in gene transformation and expression. Molecular and Cellular Probes, 41:1-7. http://dx.doi.org/10.1016/j.mcp.2018.07.002

Hao, Y., Milhaylov, M., Ivanova, E., Hadjivanov, K., Knozinger, H., Gates, B. C. (2009). CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation. Journal of Catalysis, 261: 137-149. http://dx.doi.org/10.1016/j.jcat.2008.11.005

Haruta, M., Yamada, N., Kobayashi, T., Iilima, S. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2): 301-309. http://dx.doi.org/10.1016/0021-9517(89)90034-1

Haruta, M. (1997). Size and support dependency in the catalysis of gold. Catalysis Today, 36: 153-156. http://dx.doi.org/10.1016/S0920-5861(96)00208-8

Haruta, M. (2003). When gold is not noble: Catalysis by nanoparticles. Chemical Record, 3: 75-87. http://dx.doi.org/10.1002/tcr.10053

Haruta, M. (2011). Spiers Memorial Lecture Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discussions, 152: 11-32.

Horlyck, J., Lawrey, C., Lovell, E. C., Amal, R., Scott, J. (2018). Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane. Chemical Engineering Journal, 352: 572-580. http://dx.doi.org/10.1016/j.cej.2018.07.009

Janssens, T. V. W., Carlsson, A., Puig-Molina, A., Clausen, B. S. (2006). Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalyst. Journal of Catalysis, 240: 108-113. http://dx.doi.org/10.1016/j.jcat.2006.03.008

Konova, P., Naydenov, A., Venkov, C., Mehandjiev, D., Andreeva, D., Tabakova, T. (2004). Activity and deactivation of Au/TiO2 catalyst in CO oxidation. Journal of Molecular Catalysis A, 213: 235-240. http://dx.doi.org/10.1016/j.molcata.2003.12.021

López-Acevedo, O., Kacprzak, A. K., Akola, J., Hakkinen, H. (2010). Quantum size effects in ambient CO oxidation catalyzed by ligand-protected gold cluster. Nature Chemistry, 2: 329-334. http://dx.doi.org/10.1038/nchem.589

Ma, X., Sun M., Lin Y., Liu Y., Luo F., Guo L., Qiu B., Lin Z., Chen G. (2018). Progress of visual biosensor based on gold nanoparticles. Chinese Journal of Analytical Chemistry, 46:1-10.

Mahmood, A., Ramay, S. M., Al-Zeghayer, Y., Haider, S., Shar, M., Khalid, Y. (2014). Thermal treatment effect on catalytic activity on Au/TiO2 for CO oxidation. Applied Mechanics and Materials, 548-549: 254-258.

Margitfalvi, J. L., Borbáth, I., Lázár, K., Tfirst, E., Szegedi, A., Hegedüs, M., Göbölös, S. (2001). In situ characterization of Sn-Pt/SiO2 catalysts used in low temerature oxidation of CO. Journal of Catalysis, 203: 94-103. http://dx.doi.org/10.1006/jcat.2001.3237

Michalak, W. D., Krier, J. M., Alayoglu, S., Shin, J-Y., K Wangjin, A., Kyriakos, K., Liu, Z., Somorjai, G. A. (2014). CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions. Journal of Catalysis, 312: 17-25. http://dx.doi.org/10.1016/j.jcat.2014.01.005

Pongthawornsakun, B., Mekasuwandumrong, O., Santos Aires, F. J. C., Buchel, R., Baiker, A., Pratsinis, S. E., Panpranot, J. (2018). Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Applied Catalysis A: General, 549: 1-7. http://dx.doi.org/10.1016/j.apcata.2017.09.014

Roze, E., Quinet, E., Caps, V., Bianchi, D. (2009). Experimental microkinetic approach of the surface reconstruction of gold particles during the adsorption of CO at 300 K on 1% Au/Al2O3. Journal of Physical Chemistry C, 113: 8194-8200. http://dx.doi.org/10.1021/jp811194b

Ruiz, M., Lick, I., Ponzi, M., Rodríguez-Castellón, E., Jiménez-López, A., Ponzi, E. (2011). Combustion of diesel soot in NO/O2 presence. Cesium nitrate and gold catalysts. Applied Catalysis A: General, 392(1-2): 45-56. http://dx.doi.org/10.1016/j.apcata.2010.10.024

Sandoval, A., Aguilar, A., Louis, C., Traverse, A., Zanella, R. (2011). Bimetallic Au- Ag/TiO2 catalyst prepared by deposition-precipitation: High activity and stability in CO oxidation. Journal of Catalysis, 281(1): 40-49. http://dx.doi.org/10.1016/j.jcat.2011.04.003

Sandoval, A., Delannoy, L., Méthivier, C., Louis, C., Zanella, R. (2015). Synergetic effect in bimetallic Au-Ag/TiO2 catalysts for CO oxidation: New insights from in situ characterization. Applied Catalysis A: General, 504: 287-294. http://dx.doi.org/10.1016/j.apcata.2015.01.022

Sodomi, F., Borbáth, I., Hegedus, M., Lázár, K., Sajó, I., Geszti, O., Rojas, S., García Fierro, J. L., Margitfalvi, J. (2009). Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation. Applied Surface Science, 256: 726-736. http://dx.doi.org/10.1016/j.apsusc.2009.08.049

Taniya, K., Jinno, H., Kishida, M., Ichihashi, Y., Nishiyama, S. (2012). Preparation of Sn-modified silica-coated Pt catalysts: A new Pt-Sn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. Journal of Catalysis, 288: 84-91. http://dx.doi.org/10.1016/j.jcat.2012.01.006

Urresta, J., González, O., Rodríguez, J. (2014). Preparación y caracterización del óxido de estaño y su uso como catalizador en la reacción de epoxidación de esteres grasos insaturados. Ingeniería y Competitividad, 16(1): 49-59.

Villa, A., Dimitratos, N., Chan-Thaw, C., Hammond, C., Veith, G., Wang, D., Manzoli, M., Prati, L., Hutchings, G. (2016). Characterization of gold catalysts. Chemical Society Reviews, 45: 4953-4994. http://dx.doi.org/10.1039/C5CS00350D

Wang, S., Huang, J., Geng, L., Zhu, B., Wang, X., Wu, S., Zhang, S., Huang, W. (2006). Tin dioxide supported nanometric gold: Synthesis, characterization, and low temperature catalytic oxidation of CO. Catalysis Letter, 108(1-2): 97-102. http://dx.doi.org/10.1007/s10562-006-0017-y

Widmann, D., Behm, R. (2016). Formation and removal of active oxygen species for the non-catalytic CO oxidation on Au/TiO2 catalysts. Chinese Journal of Catalysis, 37: 1684-1693. http://dx.doi.org/10.1016/S1872-2067(16)62452-X

Yu, K., Wu, Z., Zhao, Q., Li, B., Xie, Y. (2008). High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. Journal of Physical Chemistry C, 112(7): 2244-2247. http://dx.doi.org/10.1021/jp711880e

Zanella, R. (2014). Aplicacion de los nanomaterials en catálisis. Mundo Nano, 7(12): 66-82, enero-junio.

Zanella, R., Delannoy, L., Louis, C. (2005). Mechanism of deposition of gold precursor onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea. Applied Catalysis A: General, 291: 62-72. http://dx.doi.org/10.1016/j.apcata.2005.02.045

Zanella, R., Giorgio, S., Henry, C. R., Louis, C. (2002). Alternative methods for the preparation of gold nanoparticles supported on TiO2. Journal of Physical Chemistry B, 106:7634-7642. http://dx.doi.org/10.1021/jp0144810

Zanella, R., Louis, C. (2005). Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catalysis Today, 107-108: 768-777. http://dx.doi.org/10.1016/j.cattod.2005.07.008

Publicado
2019-05-05
Cómo citar
Maturano-Rojas, V., & Zanella, R. (2019). Síntesis de catalizadores bimetálicos Au-Sn/TiO2 y su aplicación en la reacción de oxidación de CO. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 12(23), 1e-21. https://doi.org/10.22201/ceiich.24485691e.2019.23.67277
Sección
Artículos de investigación