Nanofotónica. Los grandes avances y retos de un mundo pequeño

  • Víctor Coello Unidad Monterrey, Centro de Investigación Científica y de Educación Superior de Ensenada
Palabras clave: nanofotónica, nanotecnología, fotónica, plasmónica

Resumen

Se presenta una panorámica general del desarrollo de la nanofotónica a nivel global. Se exponen los desarrollos pioneros y los problemas que los mismos enfrentaron. También se comentan de manera general las tendencias actuales y se describe cuáles son los principales motivos que impiden un desarrollo terminado y cuáles son las estrategias para superarlos. Finalmente, se muestra de manera descriptiva la situación actual de esta área en México.

Citas

Ambati., M., Nam, S., Ulin, E., Genov, D., Bartal, G., Zhang, X. (2008). Observation of stimulated emission of surface plasmon polaritons. Nano Lett., 8: 3998-4001. http://dx.doi.org/10.1021/nl802603r

Ash, E. y Nicholls, G. (1972). Super-resolution aperture scanning microscope. Nature, 237(5357): 510-512. http://dx.doi.org/10.1038/237510a0

Bolger, P., Dickson, W., Krasavin, A., Liebscher, L., Hickey, S., Skryabin, D., y Zayats, A. (2010). Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Opt. Lett., 35: 1197-1199. http://dx.doi.org/10.1364/OL.35.001197

Boltasseva, A., Atwater, H. (2011). Low-loss plasmonic metamaterials. Science, 331(6015): 290-291. http://dx.doi.org/10.1126/science.1198258

Bozhevolnyi S. I. y Coello V. (1998). Elastic scattering of surface plasmon polaritons: Modeling and experiment. Phys. Rev. B, 58(16): 10899-10910. http://dx.doi.org/10.1103/PhysRevB.58.10899

Carminati, R. y Greffet. (1995). Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. J. Opt. Commun., 116(4): 316-321. http://dx.doi.org/10.1016/0030-4018(95)91252-W

Coello, V., Bozhevolnyi, S. y Pudonin, F. (1997). Imaging of surface plasmon polaritons with a near-field microscope. Proc. SPIE, 3098: 536-543.

Coello, V., Cortes, R., Garcia, C. y Elizondo, N. (2013). Surface plasmon excitation and manipulation in disordered two-dimensional nanoparticle arrays. NANO: Brief reports and reviews, 8(4): 1350044-1350055.

Coello, V. (2008). Surface plasmon polariton localization. Surface Review Letters, 15(6), 867-879. http://dx.doi.org/10.1142/S0218625X08011974

Coello, V. T. Søndergaard, S. I. Bozhevolnyi. (2004). Modeling of a surface plasmon polariton interferometer. Opts. Comm., 240: 345-350. http://dx.doi.org/10.1016/j.optcom.2004.06.042

Cortes, R., y Coello, V. (2009). Modeling of plasmonic phenomena in nanostructured surfaces. NANO: Brief Reports and Reviews, 4(4): 201-216.

Chen, Y., Ding, F., Coello, V. y Bozhevolnyi, S. (2018). On-chip spectropolarimetry by fingerprinting with random surface arrays of nanoparticles. ACS Photonics, 5 (5): 1703-1710. http://dx.doi.org/10.1021/acsphotonics.7b01059

Ditlbacher. H., Krenn, J., Leitner, A., Aussenegg, F. (2002). Two-dimensional optics with surface plasmon polaritons. Applied Physics Letters, 81(10): 1762-1764. http://dx.doi.org/10.1063/1.1506018

Drezet, A., Hohenau, A., Koller, D., Stepanov, A., Ditlbacher, H., Steinberger, B., Aussenegg, F., Leitner, A., Krenn. J. (2008). Leakage radiation microscopy of surface plasmon polaritons. Materials Science and Engineering B, 149(1): 220-229. http://dx.doi.org/10.1016/j.mseb.2007.10.010

Fang, Y. y Sun, M. (2015). Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications, 4: e294. http://dx.doi.org/10.1038/lsa.2015.67

Focus issue, Nature Photonics. (2012). 6(11): 707-794.

Fornel, F. (2001). Evanescent waves from newtonian optics to atomic optics. Alemania: Springer International Publishing.

Holmgaard, T., Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux. (2009). Dielectric-loaded plasmonic waveguide-ring resonators. Optics Express, 17(4): 2969-2975. http://dx.doi.org/10.1364/OE.17.002968

Garcia, C., Coello, V., Han, Z. y Bozhevolnyi, S. (2013). Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles. Optics Letters, 38(6): 905-907. http://dx.doi.org/10.1364/OL.38.000905

Groves, T. (2014). Electron beam lithography. Nanolithography, Science Direct. http://dx.doi.org/10.1533/9780857098757.80

Kawata, S. (ed.) (2001). Near field optics and surface plasmon polaritons. Alemania: Springer-Verlag, Topics in Applied Physics.

Kumar, S., Huck, A. y Andersen, U. (2013). Coupling of single quantum emitters to plasmons propagating on mechanically etched wires. Opt. Lett., 38: (19) 3838-3841. http://dx.doi.org/10.1364/OL.38.003838

Liu, H., Lalanne, P., Yang, X. y Hugonin, J. (2008). Surface plasmon generation by subwavelength isolated objects. IEEE Journal of Selected Topics in Quantum Electronics, 14: 1522-1529. http://dx.doi.org/10.1109/JSTQE.2008.923291

Maradudin, A., Simosen, I., Leskova, T., Mendez, E. (2001). Localization of surface plasmon polaritons on a random surface. Physica B: Condensed Matter., 296(1): 85-97. http://dx.doi.org/10.1016/S0921-4526(00)00784-5

Merlo, J., Coello, V., Cortes, R., Aguilar, F., Flores, A. (2014). Influence of the probe-sample interaction angle on image formation in apertureless scanning near field optical microscope. Modern Physics Letters B., 28(26): 1450205-1450214. http://dx.doi.org/10.1142/S0217984914502054

Ohtsu, Motoichi, Yatsui, Takashi (eds.) (2017). Progress in nanophotonics 4. Suiza: Springer International Publishing.

Pelton, M. y Bryant, G. (2013). Introduction to metal-nanoparticle plasmonics. Wiley-Science Wise Co-Publication.

Pisano, E., Garcia, C., Armenta, F., Garcia, M., Coello, V. (2018). Efficient and directional excitation of surface plasmon polaritons by oblique incidence on metallic ridges. Plasmonics, 13(6): 1935-1940. http://dx.doi.org/10.1007/s11468-018-0708-4

Radko, I., Evlyukhin, A. Boltasseva, A. y Bozhevolnyi, S. (2008a). Refracting surface plasmon polaritons with nanoparticle arrays. Opt. Express, 16(6): 3924-3930. http://dx.doi.org/10.1364/OE.16.003924

Radko, I., Bozhevolnyi, S., Brucoli, G., Martín-Moreno, L., García–Vidal, J., Boltasseva, A. (2008b). Efficiency of local surface plasmon polariton excitation on ridges. Physical Review B, 78:115115-115122. http://dx.doi.org/10.1103/PhysRevB.78.115115

Raether, H. (1988). Surface plasmons. On smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, 111. Alemania: Springer-Verlag.

Seidel, J., Grafström, S., Eng., L. (2005). Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett., 94: 177401-177405. http://dx.doi.org/10.1103/PhysRevLett.94.177401

Smolyaninov, I., Davis, C. y Zayats, A. (2005). Image formation in surface plasmon polariton mirrors: applications in high-resolution optical microscopy. New J. Phys., 7: 175-182.

Stockman, M. et al. (2018). Roadmap on plasmonics. J. Opt., 20: 1-39. http://dx.doi.org/10.1088/2040-8986/aaa114

Synge, E. H. (1928). A suggested method for extending the microscopic resolution into the ultramicroscopic region. Phil. Mag., 6(35): 356-362. http://dx.doi.org/10.1080/14786440808564615

Yoon, J., Lee, G., Ho Song, S., Oh, Ch-H. Kim, P. (2003). Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface. Journal of Applied Physics, 94(1): 123-127. http://dx.doi.org/10.1063/1.1577396

Zayats, A., Smolyaninov, I. y Maradudin, A. (2005). Nano-optics of surface plasmon polaritons. Physics Reports, 408: 131-314. http://dx.doi.org/10.1016/j.physrep.2004.11.001

Publicado
2019-10-09
Cómo citar
Coello, V. (2019). Nanofotónica. Los grandes avances y retos de un mundo pequeño. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 13(24), e1-e14. https://doi.org/10.22201/ceiich.24485691e.2020.24.69607