Controlando luz con luz en coloides de nanoesferas de plata y nanobastones de oro

  • Cid B. de Araújo Universidade Federal de Pernambuco, Departamento de Física, Programa de Pós-Graduação em Ciência de Materiais
  • Albert S. Reyna Universidade Federal Rural de Pernambuco, Unidade Acadêmica do Cabo de Santo Agostinho, Programa de Pós-Graduação em Engenharia Física
  • Nathália Talita C. Oliveira Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Ciência de Materiais
Palabras clave: nanopartículas metálicas, plasmónica, nanoesferas, nanobastones, solitones vorticales, absorción no lineal, dispersión no lineal, refracción no lineal

Resumen

Este artículo presenta una revisión sobre investigaciones recientes que demuestran el control de la luz por luz en coloides que contienen nanoesferas de plata (Ag-NS) y nanobastones de oro (Au-NR). La presentación se basa en experimentos realizados con láseres pulsados mediante la explotación de la no linealidad electrónica ultrarrápida de las muestras que exhiben no linealidades cúbico-quínticas. Efectos tales como el guiamiento y confinamiento de la luz inducida por solitones ópticos, con estructura vortical, en suspensiones coloidales de Ag-NS, además de procesos no lineales de dispersión, absorción y refracción de la luz en coloides con Au-NR fueron investigados en los experimentos. Los resultados fueron analizados mediante simulaciones numéricas basadas en adaptaciones de la ecuación de Schrödinger no lineal. Los avances discutidos en el presente artículo están a la vanguardia del interés en aplicaciones plasmónicas con nanopartículas metálicas.

Citas

Bharadwaj, P., Deutsch, B. and Novotny, L. (2009). Optical antennas. Adv. Opt. Photon., 1: 438-483. http://dx.doi.org/10.1364/AOP.1.000438

Brito-Silva, A. M., Gómez, L. A., de Araújo, C. B. and Galembeck, A. (2010). Laser ablated silver nanoparticles with nearly the same size in different carrier media. J. Nanomater. 2010: 142897. http://dx.doi.org/10.1155/2010/142897

Cesca, T., Calvelli, P., Battaglin, G., Mazzoldi, P., Mattei, G. (2012). Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets. Opt. Express, 20: 4537-4547. http://dx.doi.org/10.1364/OE.20.004537

Chen, H.-T., Taylor, A. J. and Yu, N. (2016). A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79: 076401. http://dx.doi.org/10.1088/0034-4885/79/7/076401

Da Silva-Neto, M. L., de Oliveira, M. C. A., Dominguez, C. T., Lins, R. E. M., Rakov, N., de Araújo, C. B., Menezes, L. de S., de Oliveira, H. P. and Gomes, A. S. L. (2019). UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix, Sci. Reports, 9: 11765. http://dx.doi.org/10.1038/s41598-019-48056-w

De Araújo, C. B. and Kassab, L. R. P. (2016). Enhanced photoluminescence and planar waveguide of rare earth doped germanium oxide glasses with metallic nanoparticles. In Karmakar, B., Rademann, K. and Stepanov, A. L. (eds.), Glass nanocomposites-synthesis, properties and applications. ELSEVIER.

De Araújo, C. B., Gomes, A. S. L. and Boudebs, G. (2016). Techniques for nonlinear optical characterization of materials: a review. Rep. Prog. Phys., 79: 036401. http://dx.doi.org/10.1088/0034-4885/79/3/036401

Faraday, M. (1857). Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. 147: 145-181, London.

Garcia, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D, 44: 283001. http://dx.doi.org/10.1088/0022-3727/44/28/283001

Gonçalves, M. R. (2014). Plasmonic nanoparticles: fabrication, simulation and experiments, J. Phys. D, 47: 213001. https://doi.org/10.1088/0022-3727/47/21/213001

Hache, F., Ricard, D., Flytzanis, C., Kreibig, U. (1988). The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl. Phys. A, 47: 347-357. http://dx.doi.org/10.1007/BF00615498

Kartashov, Y. V., Astrakharchik, G. E., Malomed, B. A. and Torner, L. (2019). Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nature Rev. Phys., 1: 185-197. http://dx.doi.org/10.1038/s42254-019-0025-7

Kassab, L. R. P. and de Araújo, C. B. (2019). Metal nanostructures for photonics. ELSEVIER.

Kumar, M., Nithyanandan, K. and Porsezian, K. (2018). Influence of spatial delay on the modulation instability in a composite system with a controllable nonlinearity. Phys. Rev. E, 97: 062208. http://dx.doi.org/10.1103/PhysRevE.97.062208

Lee, J., Tymchenko, M., Argyropoulos, C., Chen, P.-Y., Lu, F., Demmerle, F., Boehm, G., Amann, M.-C., Alù, A. and Belkin, M. A. (2014). Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511: 65-69. http://dx.doi.org/10.1038/nature13455

Lu, H., Liu, X., Wang, L., Gong, Y. and Mao, Dong. (2011). Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express, 19: 2910-2915. http://dx.doi.org/10.1364/OE.19.002910

Ma, H., Gomes, A. S. L. and de Araújo, C. B. (1991). Measurements of nondegenerate optical nonlinearity using a two‐color single beam method. Appl. Phys. Lett., 59: 2666-2668. http://dx.doi.org/10.1063/1.105933

Malomed, B. A. (2019). Vortex solitons: old results and new perspectives. Physica D 399: 108-137. http://dx.doi.org/10.1016/j.physd.2019.04.009

Maldonado, M., Menezes, L. de S., Araujo, L. F., da Costa, G. K. B., Carvalho, I. C. S., Fontana, J., de Araújo, C. B. and Gomes, A. S. L. (2018). Nonlinear refractive index of electric field aligned gold nanorods suspended in index matching oil measured with Hartmann-Shack wavefront aberrometer, Opt. Express, 26: 20298-20305. http://dx.doi.org/10.1364/OE.26.020298

Marini, A., Conforti, M., Valle, G. D., Lee, H. W., Tran, T. X., Chang, W., Schmidt, M. A., Longhi, S., Russell, P. S. J., Biancalana, F. (2013). Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J. Phys., 15: No. 013033. http://dx.doi.org/10.1088/1367-2630/15/1/013033

Menezes, L. de S., Acioli, L. H., Maldonado, M., Naciri, J., Charipar, N., Rativa, D., de Araújo, C. B. and Gomes, A. S. L. (2019). Large third-order nonlinear susceptibility from a gold metasurface far off the plasmonic resonance. J. Opt. Soc. Am. B, 36: 1485-1491. http://dx.doi.org/10.1364/JOSAB.36.001485

Nikoobakht, B. and El-Sayed, M. A. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater., 15: 1957-1962. http://dx.doi.org/10.1021/cm020732l

Novotny, L. and Hecht, B. (2006). Principles of nano-optics, Cambridge Press.

Oliveira, N. T. C., Reyna, A. S., Falcão, E. H. L. and de Araújo, C. B. (2019). Light scattering, absorption, and refraction due to high-order optical nonlinearities in colloidal gold nanorods. J. Phys. Chem. C, 123: 12997-13008. http://dx.doi.org/10.1021/acs.jpcc.9b01369

Ortega, A. B., Brambilia, E. C., Gayou, V. L., Macuil, R. D., Diaz, A. O., Alvarez, A. Z., Arzola, A. V. and Volke-Sepúlveda, K. (2019). Light control through nonlinear lensing effect in a colloid of biosynthesized gold nanoparticles, J. Modern Opt., 66: 502-511. http://dx.doi.org/10.1080/09500340.2018.1549287

Pareek, V., Bhargava, A., Gupta, R., Jain, N. and Panwar, J. (2017). Synthesis and applications of noble metal nanoparticles: a review. Adv. Sci. Eng. Med., 9: 527-544. http://dx.doi.org/10.1166/asem.2017.2027

Qin, Z. and Bischof, J. C. (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 41: 1191-1217. http://dx.doi.org/10.1039/c1cs15184c

Reyna, A. S. and de Araújo, C. B. (2014). Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity, Phys. Rev. A, 89: 063803. http://dx.doi.org/10.1103/PhysRevA.89.063803

Reyna, A. S., Jorge, K. C. and de Araújo, C. B. (2014). Two-dimensional solitons in a quintic-septimal medium, Phys. Rev. A, 90: 063835. http://dx.doi.org/10.1103/PhysRevA.90.063835

Reyna, A. S. and de Araújo, C. B. (2014). Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express, 22: 22456-22469. http://dx.doi.org/10.1364/OE.22.022456

Reyna, A. S. (2015). An optimization procedure for the design of all optical switches based on metal-dielectric nanocomposites, Opt. Express, 23: 7659-7666. http://dx.doi.org/10.1364/OE.23.007659

Reyna, A. S. (2016). Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium. Opt. Lett., 41: 191-194. http://dx.doi.org/10.1364/OL.41.000191

Reyna, A. S. (2017). High-order optical nonlinearities in plasmonic nanocomposites–a review. Adv. Opt. Photon., 9: 720-774. http://dx.doi.org/10.1364/AOP.9.000720

Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112: 2739-2779. http://dx.doi.org/10.1021/cr2001178

Savage, G. (1975). Glass and glassware. London: Octopus Books.

Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S. and Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Mat., 9: 193-204. http://dx.doi.org/10.1038/nmat2630

Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. and Van Stryland, E. W (1990). Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26: 760-769. http://dx.doi.org/10.1109/3.53394

Takami, A., Kurita, H. and Koda, S. (1999). Laser-induced size reduction of noble metal particles. J. Phys. Chem. B, 103: 1226-1232. http://dx.doi.org/10.1021/jp983503o

Trofimov, V. A. and Lysak, T. M. (2018). Inelastic collision of self-formed chirped solitons at a laser pulse propagation in a medium with nonlinear absorption and gold nanorods, J. Opt. Soc. Am. B, 35: 764-782. http://dx.doi.org/10.1364/JOSAB.35.000764

Walasik, W., Silahli, S. Z. and Litchinitser, N. M. (2017). Dynamics of necklace beams in nonlinear colloidal suspensions, Sci. Reports, 7: 11709. http://dx.doi.org/10.1038/s41598-017-12169-x

Wang, Z., Meng, X., Choi, S. H., Knitter, S., Kim, Y. L., Cao, H., Shalaev, V. M. and Boltasseva, A. (2016). Controlling random lasing with three-dimensional plasmonic nanorod metamaterials, Nano Lett., 16: 2471-2477. http://dx.doi.org/10.1021/acs.nanolett.6b00034

Wang, Z., Meng, X., Kildishev, A. V., Boltasseva, A. and Shalaev, V. M. (2017). Nanolasers enabled by metallic nanoparticles: from spasers to random lasers, Laser Photonics Rev., 11: 1700212. http://dx.doi.org/10.1002/lpor.201700212

Yadav, A., Zhong, L., Sun, J., Jiang, L., Cheng, G. J. and Chi, L. (2017). Tunable random lasing behavior in plasmonic nanostructures, Nano Convergence, 4: 1-8. http://dx.doi.org/10.1186/s40580-016-0095-5

Yeshchenko, O. A., Kozachenko, V. V., Tomchuk, A. V., Haftel, M., Knize, R. J. and Pinchuk, A. O. (2019). Plasmonic metasurface with tunable gap and collective surface plasmon resonance modes, J. Phys. Chem. C, 123: 13057-13062. http://dx.doi.org/10.1021/acs.jpcc.9b02515

Publicado
2019-11-08
Cómo citar
de Araújo, C., Reyna, A., & Oliveira, N. (2019). Controlando luz con luz en coloides de nanoesferas de plata y nanobastones de oro. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 13(24), 1e-16e. https://doi.org/10.22201/ceiich.24485691e.2020.25.69614