El rol de la función de transferencia de contraste en la formación de imágenes de resolución atómica de nanopartículas

  • Carlos Angeles Chávez Instituto Mexicano del Petróleo, Gerencia de Desarrollo de Materiales y Productos Químicos, Ciudad de México, M´éxico
Palabras clave: microscopía electrónica de transmisión (MET), imágenes, resolución atómica, nanopartícula, contraste de fase

Resumen

Los resultados de microscopia electrónica de transmisión de alta resolución pueden ser cuantitativamente interpretados si se realizan los ajustes necesarios de la óptica-electrónica del instrumento para la adquisición de las imágenes de resolución atómica. En el marco de este trabajo se describe cualitativamente los principios de la formación de imágenes en términos de la difracción de electrones y óptica electrónica. Al final del proceso se resume a la función de transferencia de contraste (FTC) y desenfoque de la imagen del objeto. La manipulación cuidadosa del desenfoque permite controlar la FTC para conseguir contraste de fase más fuerte de los espaciados interplanares de la red cristalina de la partícula bajo estudio. El contraste que se puede lograr es brillante u oscuro en el lado del desenfoque negativo antes del valor de desenfoque de Scherzer. Contrastes oscuros de clusters de WOx sobre contraste brillantes de la red m-ZrO2 pudo ser evidenciado a través de la manipulación controlada y  precisa del desenfoque.

Citas

Akhtar, S. (2012). Transmission electron microscopy of graphene hydrated biomaterials nanostructures: Novel techniques and analysis. Thesis dissertation, Faculty of Science and Technology, Uppsala University, Uppsala, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-171991

Allen, L. J., McBride, W., O’Leary, N. L., Oxley, M. P. (2004). Exit wave reconstruction at atomic resolution. Ultramicroscopy, (100) 91. https://doi.org/10.1016/j.ultramic.2004.01.012

Angeles-Chávez, C., Cortés-Jácome, M.A., Torres-García, E., Toledo-Antonio, J. A. (2006). Structural evolution of WO3 nanoclusters on ZrO2. Journal Materials Research, 807. https://doi.org/10.1557/jmr.2006.0100

Bals, R. S., Van Aert, S., Van Tendeloo, G., Avila-Brande, D. (2006). Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range. Phys. Rev. Lett. (96): 096106. https://doi.org/10.1103/PhysRevLett.96.096106

Barthel, J. (2008). Ultra-precise measurement of optical aberrations for sub-angström transmission electron microscopy. Thesis dissertation, Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule, Germany, N. p., Web. https://www.osti.gov/etdeweb/biblio/21084262

Borodko, Y., Ercius, P., Pushkarev, V., Thompson, C., Somorjai, G. (2012). From single Pt atoms to Pt nanocrystals: Photoreduction of Pt2+ inside of a PAMAM dendrimer. J. Phys. Chem.Lett., (3): 236. https://doi.org/10.1021/jz201599u

Brent, F., Howe, J. M. (2008). Transmission electron microscopy and diffractometry of materials, 3a ed. Springer-Verlag, Berlín, Heidelberg. https://doi.org/10.1007/978-3-540-73886-2

Danev, R., Okawara, H., Usuda, N., Kametani, K., Nagayama, K. (2002). A novel phase–contrast transmission electron microscopy producing high–contrast topographic images of weak objects. J. Biol. Phys., (28): 627. https://doi.org/10.1023/A:1021234621466

De Ruijter, W. J., Sharma, R., McCartney, M. R., Smith, D. J. (1995). Measurement of lattice–fringe vectors from digital HREM images: experimental precision. Ultramicroscopy, (57): 409. https://doi.org/10.1016/0304-3991(94)00166-K

Hawkes, P. W. (2015). The correction of electron lens aberrations. Ultramicroscopy, (156) A1. doi.org/10.1016/j.ultramic.2015.03.007

Horiuchi, S., He, L. (2000). High-resolution transmission electron microscopy, characterization of high Tc materials and devices by electron microscopy, Nigel D. Browning, Stephen J. Pennycook (eds.). Cambridge. https://doi.org/10.1017/CBO9780511534829

Hosokawa, F., Shinkawa, T., Arai, Y., Sannomiya, T. (2015). Benchmark test of accelerated multi-slice simulation by GPGPU. Ultramicroscopy, (15): 856. https://doi.org/10.1016/j.ultramic.2015.06.018

Hsieh, W. K., Anderson, E. H., Benner, G., Park, M. J., Gómez, E.D., Balsara, N.P., Kisielowski, C. (2007). Contrast transfer function design by an electrostatic phase plate. Microsc. Microanal., (13): 2. https://doi.org/10.1017/S1431927607073874

Hyeong-Seop, J., Hyo-Nam, P., Jin-Gyu, K., Jae-Kyung, H. (2013). Critical importance of the correction of contrast transfer function for transmission electron microscopy-mediated structural biology. J. Anal. Sci. Technol., (4): 14. https://doi.org/10.1186/2093-3371-4-14

Jia, C. L., Urban, K. (2004). Atomic–resolution measurement of oxygen concentration in oxide materials. Science (303): 2001. https://doi.org/10.1126/science.1093617

Kleebe, H-J., Lauterbach, S., Müller, M. (2010). Transmission electron microscopy (TEM). Bunsen-Magazin, (5): 168. https://www.yumpu.com/en/document/read/17191295/bunsen-magazin-deutsche-bunsengesellschaft-fur-physikalische-

Lentzen, M. (2008). Contrast transfer and resolution limits for sub–angstrom high–resolution transmission electron microscopy. Microsc. Microanal., (14): 16. https://doi.org/10.1017/S1431927608080045

Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K., Urban, K. (2002). High resolution imaging with aberration–corrected transmission electron microscopy, Ultramicroscopy, (92): 233. https://doi.org/10.1016/S0304-3991(02)00139-0

Nagayama, K., Danev, R. (2008). Phase contrast electron microscopy: Development of thin–film phase plates and biological applications. Phil. Trans. R. Soc. B, (363): 2153. https://doi.org/10.1098/rstb.2008.2268

Op de Beeck, M., Van Dyck, D. (1996). Direct structure reconstruction in HRTEM. Ultramicroscopy, (64): 153. https://doi.org/10.1016/0304-3991(96)00006-X

Op de Beeck, M., Van Dyck, D., Coene, W. (1996). Wave function reconstruction in HRTEM: the parabola method. Ultramicroscopy, (64): 167. https://doi.org/10.1016/0304-3991(96)00058-7

Ophus, C. (2019). Four–dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal., (25): 563. https://doi.org/10.1017/S1431927619000497

Peng, Y., Oxley, M. P., Lupini, A. R., Chisholm, M. F., Pennycook, S. J. (2008). Spatial resolution and information transfer in scanning transmission electron microscopy, Microsc. Microanal., (14): 36. https://doi.org/10.1017/S1431927608080161

Presenza-Pitman, G. (2009). Determination of the contrast and modulation transfer functions for high resolution imaging of individual atoms. Thesis dissertation, Department of Physics, University of Toronto, Toronto, Ontario. https://www.researchgate.net/publication/253639776

Rodríguez, A. G., Beltrán, L. M. (2001). SimulaTEM: a program for the multislice simulation of image and diffraction patterns of non–crystalline objects. Rev. Latin Am. Metal. Mat. (21): 46. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522001000200009

Sibarita, J-B. (2005). Deconvolution microscopy. Adv. Biochem. Engin./Biotechnol., (95) 201. https://doi.org/10.1007/b102215

Stroppa, D. G., Montoro, L. A., Beltrán, A., Conti, T. G., Da Silva, R. O., Andrés J., Longo, E., Leite, E. R., Ramírez, A. J. (2009). Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of high–resolution transmission electron microscopy and ab initio surface energy calculations. J. Am. Chem. Soc., (131): 14544. https://doi.org/10.1021/ja905896u

Su, D. (2017). Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy & Environment, (2): 70. https://doi.org/10.1016/j.gee.2017.02.001

Takai, Y., Ando, T., Ikuta, T., Shimizu, R. (1997). Principles and applications of defocus–image modulation processing electron microscopy. Scanning Microscopy, (11): 391. https://www.ecmjournal.org/smi/pdf/smi97-30.pdf

Thomas, J. M. (2017). Reflections on the value of electron microscopy in the study of heterogeneous catalysts. Proc. R. Soc. A, (473): 20160714. https://doi.org/10.1098/rspa.2016.0714

Thust, A., Coene, W. M. J., Op de Beeck, M., Van Dyck, D. (1996). Focal–series reconstruction in HRTEM: simulation studies on non–periodic objects. Ultramicroscopy, (64): 211. https://doi.org/10.1016/0304-3991(96)00011-3

Tromp, R. M., Schramm, S. M. (2013). Optimization and stability of the contrast transfer function in aberration–corrected electron microscopy. Ultramicroscopy, (125): 72. https://doi.org/10.1016/j.ultramic.2012.09.007

Urban, K. W. (2008). Studying atomic structures by aberration–corrected transmission electron microscopy. Science, (321): 506. https://doi.org/10.1126/science.1152800

Van Tendeloo, G., Bals, S., Van Aert, S., Verbeeck, J., Van Dyck, D. (2012). Advanced electron microscopy for advanced materials. Adv. Mater., (24): 5655. https://doi.org/10.1002/adma.201202107

Vulovic, M., Franken, E., Ravelli, R. B. G., Van Vliet, L. J., Rieger, B. (2012). Precise and unbiased estimation of astigmatism and defocus in transmission electron microscopy. Ultramicroscopy, (116): 115. https://doi.org/10.1016/j.ultramic.2012.03.004

Wen-Kuo, H., Fu-Rong, Ch., Ji-Jung, K., Kirkland, A. I. (2004). Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy, (98): 99. https://doi.org/10.1016/j.ultramic.2003.08.004

Yang, C., Jiang, W., Chen, D. H., Adiga, U., Ng, E. G., Chiu, W. (2009). Estimating contrast transfer function and associated parameters by constrained non–linear optimization. Journal of Microscopy, (233): 391. https://doi.org/10.1111/j.1365-2818.2009.03137.x

Young–Min, K., Jong–Man, J., Jin–Gyu, K., Youn–Joong, K. (2006). Image processing of atomic resolution transmission electron microscope images. J. Korean Phys. Soc., (48): 250. https://www.springer.com/journal/40042

Zhu, J., Penczek, P. A., Schröder, R., Frank, J. (1997). Three–dimensional reconstruction with contrast transfer function correction from energy–filtered cryoelectron micrographs: Procedure and application to the 70S Escherichia coli ribosome. J. Struct. Biol., (118): 197. https://doi.org/10.1006/jsbi.1997.3845

Publicado
2020-06-11
Cómo citar
Angeles Chávez, C. (2020). El rol de la función de transferencia de contraste en la formación de imágenes de resolución atómica de nanopartículas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 13(25), 9-27. https://doi.org/10.22201/ceiich.24485691e.2020.25.69617