Algunas aplicaciones de la nanofotónica en la biomedicina

  • Elder De la Rosa Facultad de Ingenierías, Universidad De La Salle Bajio, Campus Campestre, León, Guanajuato, 37150, México.
  • Gonzalo Ramírez Cátedra Conacyt – Centro de Investigación en Química Aplicada, COITTEC. 140, Blvd. Enrique Reyna, Saltillo, 25294, México.
  • Sandeep Panikar Facultad de Ingenierías, Universidad De La Salle Bajío, Campus Campestre. Conacyt – Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. 800, Av. Normalistas, Guadalajara, Jalisco, 44270, México.
  • Tanya Camacho Conacyt – Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jaliso.
  • Pedro Salas Salas Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, AP 1-1010 Querétaro, Qro. 76000 México.
  • Tzarara López-Luke Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58030, México.
Palabras clave: nanotecnología, nanopartículas, SERS, nanofotónica, bionanofotónica, nanomedicina, medicina teranóstica

Resumen

En este trabajo se discuten las propiedades ópticas y electrónicas de nanomateriales, se analizan sus características fundamentales y su aplicación en el diseño de dispositivos y técnicas para la detección, imagen y terapia, especialmente en problemas de cáncer. Se discuten algunos resultados recientes obtenidos en nuestro laboratorio donde hemos podido medir concentraciones del orden de 10-22 moles de complejos de interés. Reportamos la detección de residuos en sangre de medicamentos del orden de 10-8 y 10-9 molar (M), lo que abre el camino para el monitoreo de fármacos con un enfoque a la implementación de una medicina personalizada. Discutimos resultados de técnicas de terapia con el uso de nanomateriales que han permitido reducir la viabilidad celular por debajo del 10%. Estos resultados muestran que la nanotecnología está cambiando el paradigma en salud a una medicina preventiva, personalizada y al alcance de todos.

Citas

Aaron, Jesse; Elder De La Rosa, Kort Travis, Nathan Harrison, Justin Burt, Miguel José-Yacamán, Konstantin Sokolov. (2008). Polarization microscopy with stellated gold nanoparticles for robust, in-situ monitoring of biomolecules. Optic express, 16: 2153-2167. http://dx.doi.org/10.1364/OE.16.002153

Ali, Muhsin; Memoon Sajid, Muhammad Asad Ullah Khalid, Soo Wan Kim, Jong Hwan Lim, Dongeun Huh, Kyung Hyun Choi. (2020). A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. Spectrochimica Acta Part A, 226: 117610. http://dx.doi.org/10.1016/j.saa.2019.117610

Ament, Irene; Janak Prasad, Andreas Henkel, Sebastian Schmachtel, Carsten Sönnichsen. (2012). Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett., 12: 1092-1095. http://dx.doi.org/10.1021/nl204496g

Bai, R. G.; K. Muthoosamy, S. Manickam. (2015). Nanomedicine in theranostics, nanotechnology applications for tissue engineering, cap. 12, 195-213. http://dx.doi.org/10.2147/IJN.S153758

Bauch, Martin; Koji Toma, Mana Toma, Qingwen Zhang, Jakub Dostalek. (2014). Plasmon-enhanced fluorescence biosensors: a review. Plasmonic, 9: 781-799. http://dx.doi.org/10.1007/s11468-013-9660-5

Bera, Debasis; Lei Qian, Teng-Kuan Tseng y Paul H. Holloway. (2010). Quantum dots and their multimodal applications: a review. Materials, 3: 2260-2345; http://dx.doi.org/10.3390/ma3042260

Björnmalm, Mattias; Kristofer J. Thurecht, Michael Michael, Andrew M. Scott y Frank Caruso. (2017). Bridging bio–nano science and cancer nanomedicine. ACS Nano, 11: 9594-9613. http://dx.doi.org/10.1021/acsnano.7b04855

Burda, Clemens; Xiaobo Chen, Radha Narayanan y Mostafa A. El-Sayed. (2005). Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 105: 1025-1102. http://dx.doi.org/10.1021/cr030063a

Ceja-Fdez, A.; T. López-Luke, A. Torres-Castro, D. A. Wheeler, J. Z. Zhang y E. De la Rosa. (2014). Glucose detection using SERS with multi-branched gold nanostructures in aqueous médium. RSC Advances, 4: 59233-59241. http://dx.doi.org/10.1039/C4RA11055B

Cepeda-Pérez, Elisa; Iris Aguilar-Hernández, Tzarara López-Luke, Valeria Piazza, Ramón Carriles, Nancy Ornelas-Soto, Elder De la Rosa. (2016). Interaction of TGA@CdTe quantum dots with an extracellular matrix of Haematococcus pluvialis microalgae detected using surface-enhanced Raman spectroscopy (SERS). Appl. Spectroscopy, 70: 1561-1572. http://dx.doi.org/10.1177/0003702816654076

Cherenack, Kunigunde y Liesbeth van Pieterson. (2012). Smart textiles: Challenges and oportunities. J. Appl. Phys., 112: 091301. http://dx.doi.org/10.1063/1.4742728

Choi, Suji; Hyunjae Lee, Roozbeh Ghaffari, Taeghwan Hyeon, Dae-Hyeong Kim. (2016). Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Funct. Mat., 28: 4203-4218; http://dx.doi.org/10.1002/adma.201504150

Chorsi, Hamid T.; Youngkyu Lee, Andrea Alu y Johm X. J. Zhang. (2017). Tunable plasmonic substrate with ultrahigh Q-factor resonance. Sci. Reports, 7: 15985; http://dx.doi.org/10.1038/s41598-017-16288-3

Colleen, L.; Nehl Hongwei, Liao Jason, H. Hafner. (2006). Optical properties of star-shaped gold nanoparticles. Nano Lett., 6: 683-688. http://dx.doi.org/10.1021/nl052409y

Das, B. B. y Arkadeep Mitra. 2014). Nanomaterials for construction engineering-A review. Int. Journal of Materials and Manufacturing, 2: 41-46. http://dx.doi.org/10.7763/IJMMM.2014.V2.96

De la Rosa-Cruz, Elder; L. A. Díaz-Torres, P. Salas, R. A. Rodríguez, G. A. Kumar, M. A. Meneses, J. F. Mosino, J. M. Hernández, O. Barbosa-García. (2003). Luminescent properties and energy transfer in ZrO2:Sm3+ nanocrystals. J. Appl. Phys., 94: 3509-3515. http://dx.doi.org/10.1063/1.1599960

Dong, Hao; Ling-Dong Sun y Chun-Hua Yan. (2015). Energy transfer in lanthanide upconverting studies for extended optical applications. Chem. Soc. Rev., 44: 1608-1634. http://dx.doi.org/10.1039/C4CS00188E

Giust, Davide; María Isabel Lucío, Afaf H. El-Sagheer, Tom Brown, Lorraine E. Williams, Otto L. Muskens, Antonios G. Kanaras. (2018). Graphene oxide–upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops. ACS Nano, 12: 6273-6279. http://dx.doi.org/10.1021/acsnano.8b03261

Gnach, Anna y Artur Bednarkiewicz. (2012). Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nanotoday, 7: 532-563. http://dx.doi.org/10.1016/j.nantod.2012.10.006

GobinMin, André M.; Ho Lee Naomi, J. Halas William, D. James Rebekah, A. Drezek Jennifer, L. West. (2007). Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7: 1929-1934. http://dx.doi.org/10.1021/nl070610y

Gu, B. y Zhang, Q. (2018) Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci., 9: 1700690. http://dx.doi.org/10.1002/advs.201700609

He, Zheng-Xin; Lan-Chun Shi, Xiang-Yang Ran, Wei Li, Xian-Ling Wang y Fu-Kun Wang. (2016). Development of a lateral flow immunoassay for the rapid diagnosis of invasive candidiasis. Front. in Microbiol., 7: 1451. http://dx.doi.org/10.3389/fmicb.2016.01451

Hildebrand, Niko. (2011). Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano, 5: 5286-5290. http://dx.doi.org/10.1021/nn2023123

Huang, Xiaohua; Ivan H. El-Sayed, Wei Qian, Mostafa A. El-Sayed. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 128: 2115-2120; http://dx.doi.org/10.1021/ja057254a

Ibarra-Sánchez, José de Jesús; Tzarara López-Luke, Gonzalo Ramírez-García, Siraj Sidhik, Teodoro Córdova-Fraga, José de Jesús Bernal-Alvarado, M. Eduardo Cano, Alejandro Torres-Castro, Elder De la Rosa. (2018). Synthesis and characterization of Fe3O4: Yb3+: Er3+ nanoparticles with magnetic and optical properties for hyperthermia applications. J. of Magnetism and Magnetic Materials, 465: 406-411. http://dx.doi.org/10.1016/j.jmmm.2018.05.091

Kneipp, Janina; Harald Kneipp y Katrin Kneipp. (2008). SERS — a single–molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev., 37: 1052-1060. http://dx.doi.org/10.1039/B708459P

Kumar, Pandian Senthil; Isabel Pastoriza-Santos, Benito Rodríguez-González, F. Javier García de Abajo y Luis M. Liz-Marzán. (2007). High-yield synthesis and optical response of gold nanostars. Nanotechnology, 19: 015606. http://dx.doi.org/10.1088/0957-4484/19/01/015606

Kumar, Sandeep; Monika Nehra, Akash Deep, Deepak Kedia, Neeraj Dilbaghi, Ki-Hyun Kim. (2017). Quantum sized nanomaterials for solar cell applications. Renew. and Sust. Energy, 37: 821-839; http://dx.doi.org/10.1016/j.rser.2017.01.172

Lammers, Twan; Silvio Aime, Wim E. Hennink, Gert Storm, Fabian Kiessling. (2011). Theranostic nanomedicine. Acc. Chem. Res., 44: 1029-1038. http://dx.doi.org/10.1021/ar200019c

Lan, Minhuan; Shaojing Zhao, Weimin Liu, Chun-Sing Lee, Wenjun Zhang, Pengfei Wang. (2019). Photosensitizers for photodynamic therapy. Advanced Healthcare Materials, 8: 1900132. http://dx.doi.org/10.1002/adhm.201900132

Lauterwasser, Christoph (ed.) (2005). Small sizes that matter: Opportunities and risk of nanotechnologies, report in cooperation with OECD International Futures Program. OECD, Allianz AG. http://www.oecd.org/science/nanosafety/37770473.pdf

Lécuyer, Thomas; Eliott Teston, Gonzalo Ramírez-García, Thomas Maldiney, Bruno Viana, Johanne Seguin, Nathalie Mignet, Daniel Scherman, Cyrille Richard. (2016). Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostic, 6: 2488-2524. http://dx.doi.org/10.7150/thno.16589

Lee, Hiang Kwee; Yih Hong Lee, Charlynn Sher Lin Koh, Gia Chuong Phan-Quang, Xuemei Han, Chee Leng Lay, Howard Yi Fan Sim, Ya-Chuan Kao, Qi An y Xing Yi Ling. (2019). Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev., 48: 731-756. http://dx.doi.org/10.1039/C7CS00786H

Li, Ming; Scott K. Cushing y Niangiang Wu. (2015). Plasmon-enhanced optical sensors: a review. Analyst, 140: 386-406. http://dx.doi.org/10.1039/C4AN01079E

Li, Po; Yue Yan, Binlong Chen, Pan Zhang, Siling Wang, Jing Zhou, Haiming Fan, Yiguang Wang y Xiaonan Huang. (2018). Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomater. Sci., 6: 877-884. http://dx.doi.org/10.1039/c7bm01113j

Lian, Zhiqin; Xiaochen Wang, Wei Zhu, Pingping Zhang, Yongxin Yang, Chongyun Sun, Junjie Zhang, Xinrui Wang, Zheng Xu, Yong Zhao, Ruifu Yang, Suling Zhao, Lei Zhou. (2017). Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. Appl. Mater. Interfaces, 9: 3497-3504. http://dx.doi.org/10.1021/acsami.6b14906

Lv, Ruichan; Depeng Wang, Liyang Xiao, Guanying Chen, Jun Xia y Paras N. Prasad. (2017). Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for dual-modal upconversion and photoacoustic imaging together with photothermal therapy. Scientific Reports, 7: 15753. http://dx.doi.org/10.1038/s41598-017-16016-x

Mya Khin, Mya; A. Sreekumaran Nair, V. Jagadeesh Babu, Rajendiran Murugan y Seeram Ramakrishna. (2012). A review on nanomaterials for envioromental remediation. Energy Environ. Sci., 5: 8075-8109; http://dx.doi.org/10.1039/C2EE21818F

Noguez, Cecilia. (2007). Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C., 111: 3806-3819. http://dx.doi.org/10.1021/jp066539m

Oliverio, Manuela; Sara Perotto, Gabriele C. Messina, Laura Lovato, Francesco De Angelis. (2017). Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies, and costs. Appl. Mater. Interfaces, 9: 29394-29411; http://dx.doi.org/10.1021/acsami.7b01583

Panikar, S. S.; G. Ramírez-García, S. Sidhik, T. López-Luke, C. Rodríguez-González, I. H. Ciapara, P. S. Castillo, T. Camacho-Villegas y E. De la Rosa. (2019). Ultrasensitive SERS substrate for label-free therapeutic-drug monitoring of paclitaxel and cyclophosphamide in blood serum. Analytical Chemistry, 91: 2100-2111. http://dx.doi.org/10.1021/acs.analchem.8b04523

Pérez-Mayen, L. (2016). SERS substrate with gold nanoparticles functionalized to detect specific analytes. Tesis de doctorado. CIO. http://cio.repositorioinstitucional.mx/jspui/bitstream/1002/415/1/16803.pdf

Pérez-Mayen, L.; J. Oliva, P. Salas y E. De la Rosa. (2016). Nanomolar detection of glucose using SERS substrates fabricated with albumin coated gold nanoparticles. Nanoscale, 8: 11862-11869. http://dx.doi.org/10.1039/c6nr00163g

Pérez-Mayen, Leonardo; Jorge Oliva, Alejandro Torres-Castro y Elder De la Rosa. (2015). SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes. Nanoscale, 7: 10249-10258. http://dx.doi.org/10.1039/c5nr02004b

Pissuwan, Dakrong; Stella M. Valenzuela, Michael B. Cortie. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends in biotchnology, 24: 62-67. http://dx.doi.org/10.1016/j.tibtech.2005.12.004

Pitkethly, Michael J. (2004). Nanomaterials – the driving forcé. Materials Today, 7: 20-29. http://dx.doi.org/10.1016/S1369-7021(04)00627-3

Pu, Yuan; Fuhong Cai, Dan Wang, OrcidJie-Xin Wang, OrcidJian-Feng Chen. (2018). Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res., 57: 1790-1802. http://dx.doi.org/10.1021/acs.iecr.7b04836

Ramírez-García, G.; Miguel Ángel Honorato-Colin, Elder De la Rosa, Tzarara López-Luke, Sandeep S. Panikar, José de Jesús Ibarra-Sánchez, Valeria Piazza. (2019). Theranostic nanocomplex of gold-decorated upconversion nanoparticles for optical imaging and temperature-controlled photothermal therapy. J. Photochemistry and Photobiology A: Chemistry, 384: 112053. http://dx.doi.org/10.1016/j.jphotochem.2019.112053

Ramírez-García, G.; d’Orlyé F, Gutiérrez-Granados, Martínez-Alfaro, Mignet N., Richard C., Varenne A. (2015). Functionalization and characterization of persistent luminescence nanoparticles by dynamic light scattering, laser Doppler and capillary electrophoresis. Colloids Surf. B Biointerfaces, 1: 272-281. http://dx.doi.org/10.1016/j.colsurfb.2015.09.02

Ramírez-García, G.; Elder De la Rosa, Tzarara López-Luke, Sandeep S. Panikar, Pedro Salas. (2019). Controlling trapping states on selective theranostic core@shell (NaYF4:Yb,Tm@TiO2-ZrO2) nanocomplexes for enhanced NIR-activated photodynamic therapy against breast cancer cells. Dalton Trans., 48: 9962-9973. http://dx.doi.org/10.1039/C9DT00482C

Ramírez-García, G.; Sandeep S. Panikar, Tzarara López-Luke, Valeria Piazza, Miguel Angel Honorato-Colin, Tanya Camacho-Villegas, Rodolfo Hernández-Gutiérrez y Elder De la Rosa. (2018). An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer. Nanoscale, 10: 10154-10165; http://dx.doi.org/10.1039/c8nr01512k

Riehemann, Kristina; Stefan W. Schneider, Thomas A. Luger, Biana Godin, Mauro Ferrari, Harald Fuchs. (2009). Nanomedicine–Challenge and perspectives. Angewandte Chemie, 48: 872-897; http://dx.doi.org/10.1002/anie.200802585

Rowe, Chris A.; Leonard M. Tender, Mark J. Feldstein, Joel P. Golden, Stephanie B. Scruggs, Brian D. MacCraith, John J. Cras y Frances S. Ligler. (1999). Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem., 71: 3846-3852; http://dx.doi.org/10.1021/ac981425v

Savage, Nora y Mamadou S. Diallo. (2005). Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Research, 7: 331-342. http://dx.doi.org/10.1007/s11051-005-7523-5

Senellart, Pascale; Glenn Solomon y Andrew White. (2017). High performance semiconductor quantum dots single photon source. Nature nanotecnology, 12: 1026-1039; http://dx.doi.org/10.1038/nnano.2017.218

Shao, Yuyan; Jun Wang, Hong Wu, Jun Liu, Ilhan A. Aksay, Yuehe Lin. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22: 1027-1036; http://dx.doi.org/10.1002/elan.200900571

Sharma, Bhavya; Renee R. Frontiera, Anne-Isabelle Henry, Emilie Ringe, Richard P. Van Duyne. (2012). SERS: Materials, applications, and the future. Materials Today, 15: 16-25. http://dx.doi.org/10.1016/S1369-7021(12)70017-2

Shi, Jinjun; Philip W. Kantoff, Richard Wooster y Omid C. Farokhzad. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17: 20-37. http://dx.doi.org/10.1038/nrc.2016.108

Solis, D.; E. De la Rosa, O. Meza, L. A. Díaz-Torres, P. Salas, C. Angeles-Chávez. (2010). Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codoped ZrO2:Yb3+–Er3+ nanocrystals. J. Appl. Phys., 108: 023103. http://dx.doi.org/10.1063/1.3465325

Srivastava, Anup K.; Atul Dev, Surajit Karmakar. (2017). Nanosensors and nanobiosensors in food and agricultura. Enviromental Chem. Lett., 16: 161-182. http://dx.doi.org/10.1007/s10311-017-0674-7

Sun, Chunli; Xiaowen Ou, Yong Cheng, Tianyou Zhai, Bifeng Liu, Xiaoding Lou y Fan Xia. (2019). Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans., 48: 5879-5891. http://dx.doi.org/10.1039/C8DT04733B

US National Science and Technology Council, Committee on Technology, Interagency Working Group on NanoScience, Engineering and Technology. (1999). Nanostructure science and technology, a worldwide study. Septiembre. http://www.wtec.org/loyola/nano/

Wang, Feng y Xiaogang Liu. (2014). Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res., 47: 1378-1385. http://dx.doi.org/10.1021/ar5000067

Xie, Xueping; Jinfeng Liao, Xiaoru Shao, Qianshun Li y Yunfeng Lin. (2017). The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Scientific reports, 7: 3827. http://dx.doi.org/10.1038/s41598-017-04229-z

Yang, Yixing; Ying Zheng, Weiran Cao, Alexandre Titov, Jake Hyvonen, Jesse R. Manders, Jiangeng Xue, Paul H. Holloway y Lei Qian. (2015). High efficiency light emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 9: 259-266. http://dx.doi.org/10.1038/nphoton.2015.36

Yin, Yadong y Dmitri Talapin. (2013). The chemistry of functional nanomaterials. Chem. Soc. rev., 42: 2484-2487; http://dx.doi.org/10.1039/C3CS90011H

Yuan, Jingli y Guilan Wang. (2006). Lanthanide-based luminescence probes and time-resolved luminescence bioassays. TrAC Trends in Analytical Chemistry, 25: 490-500. http://dx.doi.org/10.1016/j.trac.2005.11.013

Zhou, Qing; Yilin Hou, Li Zhang, Jianlin Wang, Youbei Qiao, Songyan Guo, Li Fan, Tiehong Yang, Lin Zhu y Hong Wu. (2017). Dual-pH sensitive charge-reversal nanocomplex for tumor-targeted drug delivery with enhanced anticancer activity. Theranostic, 7: 1806-1819. http://dx.doi.org/10.7150/thno.18607

Zukovskaja, O.; S. Agafilushkina, V. Sivakov, K. Weber, D. Cialla-May, L. Osminkina y J. Popp. (2019). Rapid detection of the bacterial biomarker pyocyanin in artificial sputum using a SERS-active silicon nanowire matrix covered by bimetallic noble metal nanoparticles. Talanta, 202: 171-177. http://dx.doi.org/10.1016/j.talanta.2019.04.047

Páginas Web

http://www.nano.gov/timeline

Publicado
2019-12-03
Cómo citar
De la Rosa, E., Ramírez, G., Panikar, S., Camacho, T., Salas, P. S., & López-Luke, T. (2019). Algunas aplicaciones de la nanofotónica en la biomedicina. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 13(24), 1e-24e. https://doi.org/10.22201/ceiich.24485691e.2020.24.69618