Análisis y relevancia de los procesos catalíticos para la remoción de azufre en los combustibles fósiles

  • Marco Antonio Álvarez-Amparán Universidad Nacional Autónoma de México, Instituto de Ingeniería, Coordinación de Ingeniería Ambiental http://orcid.org/0000-0003-0624-9985
  • Luis Cedeño-Caero Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Ingeniería Química, UNICAT http://orcid.org/0000-0002-9873-0866
Palabras clave: azufre, combustibles fósiles, desulfuración de combustibles, tecnologías de desulfuración

Resumen

Hoy en día los procesos para remover contaminantes como el azufre han cobrado gran relevancia por las regulaciones ambientales impuestas, por lo que en este trabajo se analiza la presencia del azufre como elemento natural en el proceso de formación del petróleo. Se establecen los principales motivos por los cuales el azufre debe ser removido del petróleo. Se comenta el proceso de refinación del crudo de petróleo, así como una descripción del proceso convencional para desulfurar las fracciones de petróleo. Además, se mencionan las tecnologías complementarias y/o alternativas para disminuir el contenido de azufre a niveles establecidos por las normas internacionales. Finalmente, se discute acerca de las expectativas a futuro en el uso de combustibles de origen fósil y no fósil.   

Citas

Ajanovic, A., Haas, R. (2019). Economic and environmental prospects for battery electric and fuel cell vehicles: A review. Fuel Cells, 19(5): 515-529. https://doi.org/10.1002/fuce.201800171

Ateka, A., Ereña, J., Bilbao, J., Aguayo, A. T. (2020). Strategies for the intensification of CO2 valorization in the one-step dimethyl ether synthesis process. Industrial & Engineering Chemistry Research, 59(2): 713-722. https://doi.org/10.1021/acs.iecr.9b05749

Babich, I., Moulijn, J. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 82: 607-631. https://doi.org/10.1016/S0016-2361(02)00324-1

Barbosa, A. L., Vega, A. F., De Rio, Amador E. (2014). Hidrodesulfuración de crudos de petróleo: base para el mejoramiento de combustibles. Una revisión. Avances en Ciencias e Ingeniería, 5(3): 37-60. https://www.redalyc.org/articulo.oa?id=323632128003

Beydoun, Z. R. (2007). Prehistoric, ancient and mediaeval occurrences and uses of hydrocarbons in the Greater Middle East region. Journal of Petroleum Geology, 20(1): 91-95. https://doi.org/10.1111/j.1747-5457.1997.tb00757.x

Bateni, H., Able, C. (2019). Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: A review. Catalysis in Industry, 11: 7-33. https://doi.org/10.1134/S2070050419010045

Bordenave, M. L. (1993). Applied petroleum geochemistry. France: Technip- Rueil-Malmaison.

Cárdenas-Guerra, J. C., López-Arenas, T., Lobo-Oehmichen, R., Pérez-Cisneros, E. S. (2010). A reactive distillation process for deep hydrodesulfurization of diesel: Multiplicity and operation aspects. Computers & Chemical Engineering, 34(2): 196-209. https://doi.org/10.1016/j.compchemeng.2009.07.014

Chandran, D., Khalid, M., Walvekar, R., Mubarak, N. M., Dharaskar, S., Wong, W. Y., Gupta, T. C. S. M. (2019). Deep eutectic solvents for extraction-desulphurization: A review. Journal of Molecular Liquids, 275: 312-322. https://doi.org/10.1016/j.molliq.2018.11.051

Connan, J., Deschesne, O. (1992). Archaeological bitumen: identification, origins and uses of an ancient near eastern material. Materials Research Society Proceedings, 267: 683. https://doi.org/10.1557/PROC-267-683

Demirbas, M. Faith. (2009). Biorefineries for biofuel upgrading: A critical review. Applied Energy, 86: S151-S161. https://doi.org/10.1016/j.apenergy.2009.04.043

Dos Santos, R. G., Alencar, A. C. (2019). Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. International Journal of Hydrogen Energy, en prensa, prueba corregida: https://doi.org/10.1016/j.ijhydene.2019.07.133

Fahim, M. A., Alsahhaf, T. A., Elkilani, A. (2010). Fundamentals of petroleum refining. Amsterdam: Elsevier.

Garlapati, V. K., Tewari, S., Ganguly, R. (2019). Life cycle assessment of first-, second-generation, and microalgae biofuels. Advances in feedstock conversion technologies for alternative fuels and bioproducts, New Technologies, Challenges and Opportunities Woodhead Publishing Series in Energy: 355-371. https://doi.org/10.1016/B978-0-12-817937-6.00019-9

Grazia, L. (2018). State of art and perspectives about the production of methanol, dimethyl ether and syngas by carbon dioxide hydrogenation. Journal of CO2 Utilization, 27: 326-354. https://doi.org/10.1016/j.jcou.2018.08.005

Guo, B., Wang, R., Li, Y. (2011). Gasoline alkylation desulfurization over Amberlyst 35 resin: Influence of methanol and apparent reaction kinetics. Fuel, 90(2): 713-718. https://doi.org/10.1016/j.fuel.2010.10.010

Guo, B., Li, Y. (2012). Analysis and simulation of reactive distillation for gasoline alkylation desulfurization. Chemical Engineering Science, 72: 115-125. https://doi.org/10.1016/j.ces.2012.01.016

Hossain, M. N., Park, H. C., Choi, H. S. (2019). A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts, 9(3): 229. https://doi.org/10.3390/catal9030229

Hunt, J. M. (1979). Petroleum geochemistry and geology. United States: W. H. Freeman and Company, San Francisco.

International Energy Agency (IEA). (2019). World energy outlook 2019. París: OECD/IEA.

Organisation Internationale des Constructeurs d’Automobiles (OICA). (2020). http://www.oica.net/

Kotilainen, K., Aalto, P., Valta, J., Rautiainen, A., Kojo, M., Sovacool, B. K. (2019). From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions. Policy Sciences, 52: 573-600. https://doi.org/10.1007/s11077-019-09361-3

Królikowski, M. (2019). Liquid–liquid extraction of sulfur compounds from heptane with tricyanomethanide based ionic liquids. The Journal of Chemical Thermodynamics, 131: 460-470. https://doi.org/10.1016/j.jct.2018.10.009

Lateef, S. A., Ajumobi, O. O., Onaizi, S. A. (2019). Enzymatic desulfurization of crude oil and its fractions: A mini review on the recent progresses and challenges. Arabian Journal for Science and Engineering, 44: 5181-5193. https://doi.org/10.1007/s13369-019-03800-2

Leea, K. X., Valla, J. A. (2019). Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review. Reaction Chemistry and Engineering, 4: 1357-1386. https://doi.org/10.1039/C9RE00036D

Li, J., Wang, L., Cao, Y., Zhang, C., He, P., Li, H. (2018). Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels. Chinese Journal of Chemical Engineering, 26(11): 2266-2279. https://doi.org/10.1016/j.cjche.2018.07.008

Lippmann, M., Leikauf, G. D. (eds). (2020). Environmental toxicants: Human exposures and their health effects, 4a ed. United States: John Wiley & Sons.

Meyers, Robert A. (1996). Handbook of petroleum refining processes. United States: McGraw-Hill.

Orr, W. L., Damsté, J. S. S. (1990). Geochemistry of sulfur in petroleum systems. ACS Symposium Series, 429: 2-29. https://doi.org/10.1021/bk-1990-0429.ch001

Pan, X. (2011). Sulfur oxides: Sources, exposures and health effects. Encyclopedia of Environmental Health, 290-296. https://doi.org/10.1016/B978-0-444-52272-6.00069-6

Rajendran, A., Cui, T.-Y., Fan, H.-X, Yang, Z.-F., Feng, J., Li, W.-Y. (2020). A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. Journal of Materials Chemistry-A, 8: 2246-2285. https://doi.org/10.1039/C9TA12555H

Raseev, S., Dekker, M. (2003). Thermal and catalytic processes in petroleum refining. Boca Raton, Florida: CRC Press, Primera edición. https://doi.org/10.1201/9780203912300

Rietmann, N., Lieven, T. (2019). How policy measures succeeded to promote electric mobility – Worldwide review and outlook. Journal of Cleaner Production, 206: 66-75. https://doi.org/10.1016/j.jclepro.2018.09.121

Sadegh-Vaziri, R., Bäbler, U. (2019). Providing sulfur free syngas to fuel cell system. Energy Procedia, 159: 448-453. https://doi.org/10.1016/j.egypro.2018.12.041

Saleh, T. A. (2019). Nanocomposites for the desulfurization of fuels. IGI Global. https://doi.org/10.4018/978-1-7998-2146-5

Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry. 25: e00080. https://doi.org/10.1016/j.teac.2020.e00080

Sharifzadeh, M., Sadeqzadeh, M., Guo M., Borhania, T. N., Konda, N. V. S. N. M., Garcia, M. C., Wang, L., Hallette, J., Shah, N. (2019). The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 71: 1-80. https://doi.org/10.1016/j.pecs.2018.10.006

Sharmil,V. G., Banu, J. R., Kim S.-H., Kumard, G. (2020). A review on evaluation of applied pretreatment methods of wastewater towards sustainable H2 generation: Energy efficiency analysis. International Journal of Hydrogen Energy, 45(15): 8329-8345. https://doi.org/10.1016/j.ijhydene.2020.01.081

Sikarwar, P., Gosu, V., Subbaramaiah, V. (2018). An overview of conventional and alternative technologies for the production of ultra-low-sulfur fuels. Reviews in Chemical Engineering. 35(6): 669-705. https://doi.org/10.1515/revce-2017-0082

Srivastava, V. C. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. Royal Society of Chemistry Adv, 2: 759-783. https://doi.org/10.1039/C1RA00309G

Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86(1-4): 211-263. https://doi.org/10.1016/S0920-5861(03)00412-7

Stanislaus, A., Marafi, A., Rana, M. S. (2010). Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production. Catalysis Today, 153(1-2): 1-68. https://doi.org/10.1016/j.cattod.2010.05.011

Stepanenko, D., Kneba, Z. (2019). DME as alternative fuel for compression ignition engines – A review. Combustion Engines, 177(2): 172-179. https://doi.org/10.19206/CE-2019-230

Tissot, B. P., Welte, D. H. (1984). Petroleum formation and occurrence, 2a ed. Berlín: Springer-Verlag. https://doi.org/10.1007/978-3-642-96446-6

Yang, X., Su, X., Chen, D., Zhang, T., Huang, Y. (2020). Direct conversion of syngas to aromatics: A review of recent studies. Chinese Journal of Catalysis, 41(4): 561-573. https://doi.org/10.1016/S1872-2067(19)63346-2

Yue, M., Jemei, S., Gouriveau, R., Zerhouni, N. (2019). Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies. International Journal of Hydrogen Energy, 44(13): 6844-6861. https://doi.org/10.1016/j.ijhydene.2019.01.190

Publicado
2020-09-18
Cómo citar
Álvarez-Amparán, M., & Cedeño-Caero, L. (2020). Análisis y relevancia de los procesos catalíticos para la remoción de azufre en los combustibles fósiles. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 14(26), 1e-21e. https://doi.org/10.22201/ceiich.24485691e.2021.26.69633