Estructuras metal-orgánicas (MOFs) nanoestructuradas para la liberación controlada de fármacos

Palabras clave: MOFs, nanoestructura, liberación controlada de fármacos, biocompatibilidad

Resumen

Las estructuras metal-orgánicas (MOFs) son polímeros de coordinación que se componen por un centro metálico y un ligando orgánico, que pueden diseñarse empleando iones metálicos biocompatibles (Fe+3, Zn+2, Mg+2, Ca+2 y Mo+6) y ligandos orgánicos bioactivos, permitiendo la modulación de la estructura y propiedades a escala nanométrica. El objetivo del presente trabajo es dar a conocer un panorama de los materiales empleados en la liberación de fármacos, enfatizando las ventajas, avances y retos en la liberación de fármacos con MOFs nanoestructurados, así como su mecanismo de liberación, degradación y actividad antimicrobiana.

Citas

Abanades Lázaro, Isabel, Ross S. Forgan. (2019). Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 380: 230-259. http://doi.org/10.1016/j.ccr.2018.09.009

Amini-Fazl, Mohammad, Reza Mohammadi, Karim Kheiri. (2019). 5‑Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. International Journal of Biological Macromolecules, 132: 506-513. http://doi.org/10.1016/j.ijbiomac.2019.04.005

An, Hongde, Mingmin Li, Jia Gao, Zhenjie Zhang, Shengqian Ma, Yao Chen. (2019). Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coordination Chemistry Reviews, 384: 90-106. https://doi.org/10.1016/j.ccr.2019.01.001

Angelos, Sarah, Monty Liong, Eunshil Choi, Jeffrey I. Zink. (2008). Mesoporous silicate materials as substrates for molecular machines and drug delivery. Chemical Engineering Journal, 137(1): 4-13. https://doi.org/10.1016/j.cej.2007.07.074

Anirudhan, T. S., J. Christa. (2020). Temperature and pH sensitive multi-functional magnetic nanocomposite for the controlled delivery of 5-fluorouracil, an anticancer drug. Journal of Drug Delivery Science and Technology, 55: 101476. https://doi.org/10.1016/j.jddst.2019.101476

Bashir, Sajid, Sai Raghuveer Chava, Daqiang Yuan, Srinath Palakurthi, Jingbo Liu. (2020). Chapter 16 – Metal-organic frameworks and exemplified cytotoxicity evaluation. En Masoud Mozafari (ed.), Metal-organic frameworks for biomedical applications. Woodhead Publishing, 347-381. https://doi.org/10.1016/B978-0-12-816984-1.00018-4

Banerjee, Sayan, Christina T. Lollar, Zhifeng Xiao, Yu Fang, Hong-Cai Zhou. (2020). Biomedical integration of metal-organic frameworks. Trends in Chemistry, 2(5): 467-479. https://doi.org/10.1016/j.trechm.2020.01.007

Barclay, Thomas G., Candace Minhthu Day, Nikolai Petrovsky, Sanjay Garg. (2019). Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers, 221: 94-112. https://doi.org/10.1016/j.carbpol.2019.05.067

Beg, Sarwar, Mahfoozur Rahman, Atul Jain, Sumant Saini, Patrick Midoux, Chantal Pichon, Farhan Ahmad, Sohail Akhter, Sohail. (2017). Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discovery Today, 22(4): 625-637. https://doi.org/10.1016/j.drudis.2016.10.001

Bigham, Ashkan, S. A. Hassanzadeh-Tabrizi, Mohammad Rafienia, Hossein Salehi. (2016). Ordered mesoporous magnesium silicate with uniform nanochannels as a drug delivery system: The effect of calcination temperature on drug delivery rate. Ceramics International, 42(15): 17185-17191. https://doi.org/10.1016/j.ceramint.2016.08.009

Bruch, Gisele E., Lorena F. Fernandes, Beatriz L. T. Bassi, Marco Túllio R. Alves, Isabelle O. Pereira, Frédéric Frézard, André R. Massensini. (2019). Liposomes for drug delivery in stroke. Brain Research Bulletin, 152: 246-256. https://doi.org/10.1016/j.brainresbull.2019.07.015

Bunker, Alex, Aniket Magarkar, Tapani Viitala. (2016). Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858(10): 2334-2352. https://doi.org/10.1016/j.bbamem.2016.02.025

Cabrera-García, Alejandro, Elisa Checa-Chavarria, Eva Rivero-Buceta, Victoria Moreno, Eduardo Fernández, Pablo Botella. (2019). Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. Journal of Colloid and Interface Science, 541: 163-174. https://doi.org/10.1016/j.jcis.2019.01.042

Cai, Hong, Yong-Liang Huang, Dan Li. (2019). Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coordination Chemistry Reviews, 378: 207-221. https://doi.org/10.1016/j.ccr.2017.12.003

Couvreur, Patrick. (2012). Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 65(1): 3-21. http://doi.org/10.1016/j.addr.2012.04.010

Christodoulou, Ioanna, Christian Serre, Ruxandra Gref. (2020). Chapter 21 Metal-organic frameworks for drug delivery: Degradation mechanism and in vivo fate. En Masoud Mozafari (ed.), Metal-organic frameworks for biomedical applications. Woodhead Publishing, 467-489. https://doi.org/10.1016/B978-0-12-816984-1.00023-8

Dong, Peng, K. P. Rakesh, H. M. Manukumar, Yasser Hussein Eissa Mohammed, C. S. Karthik, S. Sumathi, P. Mallu, Hua-Li Qin. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic Chemistry, 85: 325-336. https://doi.org/10.1016/j.bioorg.2019.01.019

Duan, Qianqian, Lan Ma, Boye Zhang, Yixia Zhang, Xiaoning Li, Tao Wang, Wendong Zhang, Yi Li, Shengbo Sang. (2019). Construction and application of targeted drug delivery system based on hyaluronic acid and heparin functionalised carbon dots. Colloids and Surfaces B: Biointerfaces, 188: 110768. https://doi.org/10.1016/j.colsurfb.2019.110768

Evans, Jack D., Bikash Garai, Helge Reinsch, Weijin Li, Stefano Dissegna, Volodymyr Bon, Irena Senkovska, Roland A. Fischer, Stefan Kaskel, Christoph Janiak, Norbert Stock, Dirk Volkmer, (2019). Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 380: 378-418. https://doi.org/10.1016/j.ccr.2018.10.002

Forouzandehdel, Shayan, Sherwin Forouzandehdel, Mina Rezghi Rami. (2020). Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery. Carbohydrate Research, 487: 107889. https://doi.org/10.1016/j.carres.2019.107889

Gaudin, C., D. Cunha, E. Ivanoff, P. Horcajada, G. Chevé, A. Yasri, O. Loget, C. Serre, G. Maurin. (2012). A quantitative structure activity relationship approach to probe the influence of the functionalization on the drug encapsulation of porous metal-organic frameworks. Microporous and Mesoporous Materials, 157: 124-130. https://doi.org/10.1016/j.micromeso.2011.06.011

Giménez-Marqués, M., T. Hidalgo, C. Serre, P. Horcajada, (2016). Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 307(2): 342-360. https://doi.org/10.1016/j.ccr.2015.08.008

Gulcay, Ezgi, Ilknur, Erucar. (2020). 6. Metal-organic frameworks for biomedical applications. En Raju Khan, Shaswat Barua (eds.), Two-dimensional nanostructures for biomedical technology, 173-210. https://doi.org/10.1016/B978-0-12-817650-4.00006-1

Guo, Qin, Chen Jiang (2020). Delivery strategies for macromolecular drugs in cancer therapy. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2020.01.009

He, Haisheng, Yi Lu, Jianping Qi, Quangang Zhu, Zhongjian Chen, Wei Wu. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1): 36-48. https://doi.org/10.1016/j.apsb.2018.06.005

Horcajada, Patricia, Tamim Chalati, Christian Serre, Brigitte Gillet, Catherine Sébrié, Tarek Baati, Jarrod Eubank, Daniela Heurtaux, Pascal Clayette, Christine Kreuz, Jong-San Chang, Young Kyu Hwang, Veronique Marsaud, Phuong-Nhi Bories, Luc Cynober, Sophie Gil, Gerard Férey, Patrick Couvreur, Ruxandra Gref. (2010). Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 9: 8-172. https://doi.org/10.1038/nmat2608

Huang, Da, Decheng Wu. (2018). Biodegradable dendrimers for drug delivery. Materials Science and Engineering: C, 90:713-727. https://doi.org/10.1016/j.msec.2018.03.002

Huxford, Rachel C., Joseph Della Rocca, Wenbin Lin. (2010). Metal–organic frameworks as potential drug carriers. Current Opinion in Chemical Biology, 14(2): 262-268. https://doi.org/10.1016/j.cbpa.2009.12.012

Javanbakht, Siamak, Afsaneh Hemmati, Hassan Namazi, Abolfazl Heydari. (2019). Carboxymethyl cellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.12.007

Kaur, Jashandeep, Gurlal Singh Gill, Kiran Jeet. (2019). Chapter 5 - Applications of carbon nanotubes in drug delivery: A comprehensive review. En Shyam S. Mohapatra, Shivendu Ranjan, Nandita Dasgupta, Raghvendra Kumar Mishra, Sabu Thomas (eds.), Micro and nano technologies, characterization and biology of nanomaterials for drug delivery, 113-135. https://doi.org/10.1016/B978-0-12-814031-4.00005-2

Khan, Nazmul Abedin, Zubair Hasan, Sung Hwa Jhung. (2018). Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized and analogous MOFs. Coordination Chemistry Reviews, 376: 20-45. https://doi.org/10.1016/j.ccr.2018.07.016

Kumar, Pawan, Bhaskar Anand, Yiu Fai Tsang, Ki-Hyun Kim, Sadhika Khullar, Bo Wang. (2019). Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 176: 108488. https://doi.org/10.1016/j.envres.2019.05.019

Lakshmi, Buddolla Anantha, Sanghyo Kim. (2019). Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. Materials Science and Engineering: C, 105: 110091. https://doi.org/10.1016/j.msec.2019.110091

Li, Chong, Jiancheng Wang, Yiguang Wang, Huile Gao, Gang Wei, Yongzhuo Huang, Haijun Yu, Yong Gan, Yongjun Wang, Lin Mei, Huabing Chen, Haiyan Hu, Zhiping Zhang, Yiguang Jin. (2019). Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 9(6): 1145-1162. https://doi.org/10.1016/j.apsb.2019.08.003

Li, Sheng, Jun Zhang, Dan-Dan Ju, Xin Li, Jun-Cheng Zhang, Xu Yan, Hong-Di Zhang, Feng Song, Yun-Ze Long. (2018). Flexible inorganic composite nanofibers with carboxyl modification for controllable drug delivery and enhanced optical monitoring functionality. Chemical Engineering Journal, 350: 645-652, https://doi.org/10.1016/j.cej.2018.05.166

Li, Zixian, Andre Luis Branco de Barros, Daniel Cristian Ferreira Soares, Sara Nicole Moss, Laleh Alisaraie. (2017). Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. International Journal of Pharmaceutics, 524(1-2): 41-54. https://doi.org/10.1016/j.ijpharm.2017.03.017

Liu, Weicong., Yuyu Zhong, Xiaoxiong Wang, Canfeng Zhuang, Junhao Chen, Dong Liu, Weiwei Xiao, Ying Pan, Jianjing Huang, Jianqiang Liu. (2019). A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery. Inorganic Chemistry Communications, 111: 107675. https://doi.org/10.1016/j.inoche.2019.107675

Lu, Yu-Jen, Er-Yuan Chuang, Yu-Hsin Cheng, T.S. Anilkumar, Huai-An Chen, Jyh-Ping Chen. (2019). Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy. Chemical Engineering Journal, 373:720-733. https://doi.org/10.1016/j.cej.2019.05.055

Maleki, Reza, Hamid Hassanzadeh Afrouzi, Mirollah Hosseini, Davood Toghraie, Sara Rostami. (2020). Molecular dynamics simulation of Doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. Computer Methods and Programs in Biomedicine, 184: 105303. https://doi.org/10.1016/j.cmpb.2019.105303

Mohammed, Razeeth Shait Mohammed, Varish Ahmad, Abrar Ahmad, Shams Tabrez, Hani Choudhry, Mazin A. Zamzami, Muhammed A. Bakhrebah, Aftab Ahmad, Samina Wasi, Hasan Mukhtar, Mohammad Imran Khan. (2019). Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Seminars in Cancer Biology. https://doi.org/10.1016/j.semcancer.2019.12.015

Nadar Shamraja S., Leena Vaidya, Shefali Maurya, Virendra K. Rathod. (2019). Polysaccharide based metal organic frameworks (polysaccharide–MOF): A review. Coordination Chemistry Reviews, 396: 1-21. https://doi.org/10.1016/j.ccr.2019.05.011

Nadizadeh, Zahra, M. Reza Naimi-Jamal, Leila Panahi. (2018). Mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery. Journal of Solid State Chemistry, 259: 35-42. https://doi.org/10.1016/j.jssc.2017.12.027

Nguyen Thi Thanh Uyen, Zuratul Ain Abdul Hamid, Nguyen Xuan Thanh Tram, Nurazreena Ahmad. (2020). Fabrication of alginate microspheres for drug delivery: A review. Int. J. Biol. Macromol., 153: 1035. https://doi.org/10.1016/j.ijbiomac.2019.10.233

Pander, Marzena, Anna Żelichowska, Wojciech Bury. (2018). Probing mesoporous Zr-MOF as drug delivery system for carboxylate functionalized molecules. Polyhedron, 156: 131-137. https://doi.org/10.1016/j.poly.2018.09.006

Pandey, Abhijeet, Namdev Dhas, Prashant Deshmukh, Carlos Caro, Pravin Patil, Maria Luisa García-Martín, Bharath Padya, Ajinkya Nikam, Tejal Mehta, Srinivas Mutalik. (2020). Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coordination Chemistry Reviews, 409: 213212. https://doi.org/10.1016/j.ccr.2020.213212

Parker, Christina L., McSweeney Morgan D., Lucas Andrew T., Jacobs Timothy M., Wadswort Daniel, Zamboni William C., Lai Samuel K. (2019). Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. Nanomed-Nanotechnol, 21: 102076. https://doi.org/10.1016/j.nano.2019.102076

Paul, Willi, Chandra Sharma. (2010). Chapter 13 Inorganic nanoparticles for targeted drug delivery. En Chandra P. Sharma (ed.), Biointegration of medical implant materials: Science and design. Woodhead Publishing Series in Biomaterials, 204-235. http://doi.org/10.1533/9781845699802.2.204

Prajapati, Shiv Kumar, Ankit Jain, Aakanchha Jain, Sourabh Jain. (2019). Biodegradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal, 120: 109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018

Qian, Ken K., Robin H. Bogner. (2012). Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. Journal of Pharmaceutical Sciences, 101(2): 444-463. https://doi.org/10.1002/jps.22779

Rajkumar, T., Deepak Kukkar, Ki-Hyun Kim, Jong Ryeul Sohn, Akash Deep. (2019). Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. Journal of Industrial and Engineering Chemistry, 72: 50-66. https://doi.org/10.1016/j.jiec.2018.12.048

Raphey, V. R., T. K. Henna, K. P. Nivitha, P. Mufeedha, Chinnu Sabu, K. Pramod. (2019). Advanced biomedical applications of carbon nanotube. Materials Science and Engineering: C, 100: 616-630. https://doi.org/10.1016/j.msec.2019.03.043

Rasheed, T., F. Nabeel, A. Raza, M. Bilal, H. M. N. Iqbal. (2019). Biomimetic nanostructures/cues as drug delivery systems: A review. Materials Today Chemistry, 13: 147-157. https://doi.org/10.1016/j.mtchem.2019.06.001

Ren, Jianwei, Xoliswa Dyosiba, Nicholas Musyoka, Henrietta W. Langmi, Mkhulu Mathe, Shijun Liao. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 352: 187-219. http://doi.org/10.1016/j.ccr.2017.09.005

Rojas, Sara, Ana Arenas-Vivo, Patricia Horcajada. (2019). Metal-organic frameworks: A novel platform for combined advanced therapies. Coordination Chemistry Reviews, 388: 202-226. https://doi.org/10.1016/j.ccr.2019.02.032

Safaei, Mohadeseh, Mohammad Mehdi Foroughi, Nasser Ebrahimpoor, Shohreh Jahani, Ali Omidi, Mehrdad Khatami. (2019). A review on metal-organic frameworks: Synthesis and applications. Trends in Analytical Chemistry, 118: 401-425. https://doi.org/10.1016/j.trac.2019.06.007

Sharma, Suraj, Sweet Naskar, Ketousetuo Kuotsu (2019). A review on carbon nanotubes: Influencing toxicity and emerging carrier for platinum based cytotoxic drug application. Journal of Drug Delivery Science and Technology, 51: 708-720. https://doi.org/10.1016/j.jddst.2019.02.028

Sherje, Atul P., Mrunal Jadhav, Bhushan R. Dravyakar, Darshana Kadam. (2018). Dendrimers: A versatile nanocarrier for drug delivery and targeting. International Journal of Pharmaceutics, 548(1): 707-720. https://doi.org/10.1016/j.ijpharm.2018.07.030

Shijun, Tai, Weiquan Zhang, Jinsheng Zhang, Genxiang Luo, Yu Jia, Mingli Deng, Yun Ling. (2016). Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Materials, 220: 148-154. https://doi.org/10.1016/j.micromeso.2015.08.037

Unamuno, X, E. Imbuluzqueta, F. Salles, P. Horcajada, M. J. Blanco-Prieto. (2018). Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. European Journal of Pharmaceutics and Biopharmaceutics, 132: 11-18. https://doi.org/10.1016/j.ejpb.2018.08.013

Vahed, Tahereh Azizi, M. Reza Naimi-Jamal, Leila Panahi. (2019). Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release. Journal of Drug Delivery Science and Technology, 49: 570-576. https://doi.org/10.1016/j.jddst.2018.12.022

Wang, Julia, Jonah A. Kaplan, Yolonda Colson, Mark Grinstaff. (2016). Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Advanced Drug Delivery Reviews, 108: 68-82. http://www.org/10.1016/j.addr.2016.11.001

Wang, Lei, Min Zheng, Zhigang Xie. (2018). Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise. Journal of Materials Chemistry B, 6: 707-717. https://doi.org/10.1039/C7TB02970E

Wang, Ying, Yan Jianhua, Wen Nachuan, Xiong Hongjie, Shundong Cai, He Qunye, Hu Yaqin, Peng Dongming, Liu Zhenbao, Liu Yanfei. (2019). Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 230: 119619. https://doi.org/10.1016/j.biomaterials.2019.119619

Wang, Zhe, Xiangping Deng, Jinsong Ding, Wenhu Zhou, Xing Zheng, Guotao Tang. (2017). Mechanisms of drug release in pH-sensitive micelles for tumor targeted drug delivery system: A review. International Journal of Pharmaceutics, 535(1-2): 253-260. https://doi.org/10.1016/j.ijpharm.2017.11.003

Wei, Shi, Yern Chee Ching, Cheng Hock Chuah. (2020). Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydrate Polymers, 231: 115744. https://doi.org/10.1016/j.carbpol.2019.115744

Wuttke, Stefan, Marjorie Lismont, Alberto Escudero, Bunyarat Rungtaweevoranit, Wolfgang J. Parak. (2017). Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 123: 172-183. https://doi.org/10.1016/j.biomaterials.2017.01.025

Wyszogrodzka, Gabriela, Bartosz Marszałek, Barbara Gil, Przemysław Dorożyński, (2016). Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discovery Today, 21(6): 1009-1018. https://doi.org/10.1016/j.drudis.2016.04.009

Xu, Min, Nan Li. (2020). Chapter 12 - Metal-based nanocontainers for drug delivery in tumor therapy. En Phuong Nguyen-Tri, Trong-On Do, Tuan Anh Nguyen (eds.), Smart nanocontainers: In micro and nano technologies, 195-215. https://doi.org/10.1016/B978-0-12-816770-0.00012-5

Yao, Qingqing, Liu Yangxi, Selvaratnam Balaranjan, Koodali Ranjit, Sun Hongli. (2018). Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. Journal of Controlled Release, 279: 69-78. http://www.doi.org/10.1016/j.jconrel.2018.04.011

Zhang, Lei, Yan Chen, Rui Shi, Tingguo Kang, Guangsheng Pang, Boran Wang, Yue Zhao, Xu Zeng, Changxin Zou, Peng Wu, Jiayang Li. (2018). Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA). Inorganic Chemistry Communications, 96: 20-23. https://doi.org/10.1016/j.inoche.2018.07.029

Zhang, Shu, Xibo Pei, Huile Gao, Song Chen, Jian Wang. (2020). Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters, 31(5): 1060-1070. https://doi.org/10.1016/j.cclet.2019.11.036

Zhang, Ying, Hon Fai Chan, Kam W. Leong. (2013). Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews, 65(1): 104-120. https://doi.org/10.1016/j.addr.2012.10.003

Zhang, Zhan, Wei Sang, Lisi Xie, Yunlu Dai. (2019). Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coordination Chemistry Reviews, 399: 213022. https://doi.org/10.1016/j.ccr.2019.213022

Zheng, Yilin, Li Ziying, Chen Haijun, Gao Yu. (2020). Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. European Journal of Pharmaceutical Sciences, 144: 105213. http://doi.org/10.1016/j.ejps.2020.105213

Zhong, Xiaofang, Yunting Zhang, Lu Tan, Tao Zheng, Yingying Hou, Xiaoyu Hong, Guangsheng Du, Xiaoyan Chen, Yuandong Zhang, Xun Sun. (2019). An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. Journal of Controlled Release, 300: 81-92. https://doi.org/10.1016/j.jconrel.2019.02.035

Zhu, Wenjun, Jiayue Zhao, Qian Chen, Zhuang Liu. (2019). Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. Coordination Chemistry Reviews, 398: 113009. https://doi.org/10.1016/j.ccr.2019.07.006

Publicado
2020-09-18
Cómo citar
Claudio-Rizo, J., Cano Salazar, L., Flores-Guia, T., & Cabrera-Munguia, D. (2020). Estructuras metal-orgánicas (MOFs) nanoestructuradas para la liberación controlada de fármacos. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 14(26), 1e-29e. https://doi.org/10.22201/ceiich.24485691e.2021.26.69634