Producción de combustibles renovables

  • Rogelio Cuevas-García Universidad Nacional Autónoma de México, Facultad de Química, Unidad de Investigaciones en Catálisis (UNICAT), Departamento de Ingeniería Química, https://orcid.org/0000-0002-4361-2280
  • Isaac Nava Bravo Universidad Nacional Autónoma de México, Facultad de Química, Unidad de Investigaciones en Catálisis (UNICAT), Departamento de Ingeniería Química https://orcid.org/0000-0002-1609-7463
Palabras clave: biocombustibles, bioetanol, biodiésel, diésel verde, bioturbosina, biocrudo, microalgas

Resumen

En este artículo se hace una revisión sobre la producción de biocombustibles desde el punto de vista de la catálisis. Se describen los tipos de biocombustibles existentes y se analiza la necesidad de utilizarlos. Para los cuatro biocombustibles más importantes: bioetanol, biodiésel, diésel verde y biocrudo se describe la forma de producción y el tipo de catalizador que se utiliza en su producción.

Citas

Afshar Taromi, A. y Kaliaguine, S. (2018). Green diesel production via continuous hydrotreatment of triglycerides over mesostructured γ-alumina supported NiMo/Co Mo catalysts. Fuel Process. Technol., 171: 20-30. https://doi.org/10.1016/J.FUPROC.2017.10.024

Alonso-Ramírez, G., Cuevas-García, R., Sánchez-Minero, F., Ramírez, J., Moreno-Montiel, M., Ancheyta, J. y Carbajal-Vielman, R. (2019). Catalytic hydrocracking of a Mexican heavy oil on a MoS2/Al2O3 catalyst: I. Study of the transformation of isolated saturates fraction obtained from SARA analysis. Catal. Today, (julio): 1-10. https://doi.org/10.1016/j.cattod.2019.07.031

Anand, V., Gautam, R. y Vinu, R. (2017). Non-catalytic and catalytic fast pyrolysis of Schizochytrium limacinum microalga. Fuel, 205: 1-10. https://doi.org/10.1016/j.fuel.2017.05.049

Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F. y Ikhu-Omoregbe, D. I. O. (2014). A review of current technology for biodiesel production: State of the art. Biomass Bioenergy, 61: 276-297. https://doi.org/10.1016/j.biombioe.2013.11.014

Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A. y Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sust. Energ. Rev., 18: 211-245. https://doi.org/10.1016/j.rser.2012.10.013

Azizi, K., Moraveji, M. K., y Najafabadi, H. A. (2018). A review on bio-fuels production from microalgal biomass by using pyrolysis method. Renew. Sust. Energ. Rev., 82: 3046-3059. https://doi.org/10.1016/j.rser.2017.10.033

Babich, I.V., Van derHulst, M., Lefferts, L., Moulijn, J. A., O’Connor, P., y Seshan, K. (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy, 35: 3199-207. http://dx.doi.org/10.1016/j.biombioe.2011.04.043

Bacha, J., Freel, J., Gibbs, A., Gibbs, L., Hemighaus, G., Hoekman, K., Mills, J. (2007). Diesel fuels technical review. Chevron Global Marketing, 1-116. https://doi.org/10.1063/1.3575169

Bello-Zakari, B. (2015). Hydroprocessing microalgae derived hydrothermal liquefaction bio-crude for middle distillate fuels production- a review. NIJOTECH., 134(4): 737-749. http://dx.doi.org/10.4314/njt.v34i4.11

Bonelli, B., Cozzolino, M., Tesser, R., Di Serio, M., Piumetti, M., Garrone, E., y Santacesaria, E. (2007). Study of the surface acidity of TiO2/SiO2 catalysts by means of FTIR measurements of CO and NH3 adsorption. J. Catal., 246(2): 293-300. https://doi.org/10.1016/J.JCAT.2006.12.015

Bosma, R. de Vree, J. H., Slegers, P. M., Janssen, M., Wijiffels, R. H., y Barbosa, M. J. (2014). Design and constrution of the microalgal pilot facility AlgaePARC. Algal Res., 6(B): 160-169. https://doi.org/10.1016/j.algal.2014.10.006

Brennan, L., y Owende, P. (2010). Biofuels from microalgae- A review of technology for production, processing and extractions of biofuels and co-products. Renew. Sust. Energ. Rev., 14(2): 557-577. https://doi.org/10.1016/j.rser.2009.10.009

Busic, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivancic Santek, M., Komes, D., Novak, S., y Santek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol., 56(3): 289-311. https://doi:10.17113/ftb.56.03.18.5546

Cabrera Munguia, D. A., Tzompantzi, F., Gutiérrez-Alejandre, A., Rico, J. L., y González, H. (2017). ZnAl-Zr hydrotalcite-like compounds activated at low temperature as solid base catalyst for the transesterification of vegetable oils. Energy Procedia, 142: 582-589. https://doi.org/10.1016/j.egypro.2017.12.097

Cantrell, K. B., Ducey, T., Ro, K. S., y Hunt, P. G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol., 99(17): 7941-7953. https://doi.org/10.1016/j.biortech.2008.02.061

Carlos, R. M., y Ba Khang, D. (2008). Characterization of biomass energy projects in Southeast Asia. Biomass Bioenergy, 32(6): 525-532. https://doi.org/10.1016/J.BIOMBIOE.2007.11.005

Cavani, F., Trifirò, F., y Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparations, properties and applications. Catal. Today, 11: 173-301. https://doi.org/10.1016/0920-5861(91)80068-K

Cheng, F., Cui, Z., Chen, L., Jarvis, J., Paz, N., Schaub, T., Nirmalakhandan, N., y Brewer, C. E. (2017). Hydrothermal liquefaction of high-and low lipid algae: bio-crude oil chemistry. Appl. Energy, 206: 278-292. https://doi.org/10.1016/j.apenergy.2017.08.105

Cheng, J., Li, T., Huang, R., Zhou, J., y Cen, K. (2014). Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality. Bioresour. Techno., 158: 378-382. https://doi.org/10.1016/j.biortech.2014.02.112

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25(3): 294-306. https://doi.org/10.1016/J.BIOTECHADV.2007.02.001

Chiaramonti, D., Prussi, M., Buffi, M. y Tacconi, D. (2014). Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Appl. Energy., 136: 767-774. https://doi.org/10.1016/j.apenergy.2014.08.065

Coelho, A., Perrone, O. M., Gomes, E., Da-Silva, R., Thoméo, J. C., y Boscolo, M. (2017). Mixed metal oxides from sucrose and cornstarch templated hydrotalcite-like LDHs as catalysts for ethyl biodiesel synthesis. Appl. Catal. A.-G., 532: 32-39. https://doi.org/10.1016/j.apcata.2016.12.012

Crews, K., Reeves, C., Thomas, P., Abugri, D., Russell, A. y Curry, M. L. (2014). Heterogeneous Catalysis of C–O bond cleavage for cellulose deconstruction: A potential pathway for ethanol production. ISRN Nanotechnology, 2014: 8. https://doi.org/http://dx.doi.org/10.1155/2014/634679

De Jong, S., Antonissen, K., Hoefnagels R., Lonza L., Wang M., Faaij A. y Junginger M. (2017). Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels, 10(64): 1-18. https://doi.org/10.1186/s13068-017-0739-7

De Rezende, S. M., De Castro Reis, M., Reid, M. G., Lúcio Silva, P., Coutinho, F. M. B., Da Silva San Gil, R. A., y Lachter, E. R. (2008). Transesterification of vegetable oils promoted by poly(styrene-divinylbenzene) and poly(divinylbenzene). Appl. Catal. A.-G., 349(1-2): 198-203. https://doi.org/10.1016/J.APCATA.2008.07.030

Deng, X., Fang, Z., Liu, Y. H., y Yu C. L. (2011). Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy, 36(2): 777-784. https://doi.org/10.1016/j.energy.2010.12.043

Demirbas, A. (2000). Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 41(6), 633-646. https://doi.org/10.1016/S0196-8904(99)00130-2

Díaz-Pérez, M. A. y Serrano-Ruiz, J. C. (2020). Catalytic production of jet fuels from biomass. Molecules, 25(4): 802. https://doi.org/10.3390/molecules25040802

Duan, P., y Savage, P. E. (2011). Hydrothermal liquefaction of a microalgae with heterogeneous catalyst. Ind. Eng. Chem. Res., 50: 52-61. https://doi.org/10.1021/ie100758s

Dunkan, J. (2003). Cost of biodiesel production. http://www.globalbioenergy.org/uploads/media/0305_Duncan_-_Cost-of-biodiesel-roduction.pdf

Eglof, G. (1938). Motor fuel economy of Europe. Industrial and Engineering Chemistry, 30(10): 1091-1104.

Elliot, D.C, Biller, P., Ross, A. B., Schmidt, A. J. y Jones, S. B. (2015). Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour. Technol., 178:147-56. https://doi.org/10.1016/j.biortech.2014.09.132

Fan, M., Liu, Y., Zhang, P., y Jiang, P. (2016). Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification. Fuel Process. Technol., 149: 163-168. https://doi.org/10.1016/j.fuproc.2016.03.029

Ferrari, L. (2013). Energías fósiles: diagnóstico, perspectivas e implicaciones económicas. Revista Mexicana de Física, 59(2): 36-43. (Consultado: 18 de enero, 2020) ISSN: 0035-001X. https://www.redalyc.org/articulo.oa?id=570/57030971005

Fortier, M. O., Roberts, G. W., Stagg-Williams, S. M., y Sturm, B. M. (2014). Life cycle assessment of bio-jet from hydrothermal liquefaction of microalgae. Appl. Energy, 122: 73-82. https://doi.org/10.1016/j.apenergy.2014.01.077

Ganduglia, F., León, J., Gasparini, R., Rodríguez, M., Huarte, G., Estrada, J., y Filgueiras, E. (2009). Manual de biocombustibles. 230 pp. https://doi.org/ISBN13: 978-92-9248-121-6

García, A. L., Torri, C., Samorí, C., van der Spek, J., Fabbri, D., Sascha, R. A. K., y Frederick Brilman, D. W. (2012). Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels, 26(1): 642-57. https://doi.org/10.1021/ef201415s

Garibay Hernández, A., Vázquez-Duhalt, R., del Pilar Sánchez Saavedra, M., Serrano Carreón, L., y Martínez Jiménez, A. (2009). Biodiesel a partir de microalgas. Sociedad Mexicana de Biotecnología y Bioingeniería, 13: 38-61.

Gollakota, A. R. K., Kishore, N., y Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renew. Sust. Energ. Rev., 81(part 1): 1378-92. https://doi.org/10.1016/j.rser.2017.05.178

González-Gálvez, O. D., Cuevas-García, R., Nava Bravo, I., Velasquez-Orta, S. B., Harvey, A., y Orta Ledesma, M.A. (2020). Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Aceptado para su publicación en Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00716-y

Gumina, B., Espro, C., Galvagno, S., Pietropaolo, R., y Mauriello, F. (2019). Bioethanol production from unpretreated cellulose under neutral selfsustainable hydrolysis/hydrogenolysis conditions promoted by the heterogeneous Pd/Fe3O4 catalyst. ACS Omega, 4: 352-357. https://doi.org/10.1021/acsomega.8b03088

Gutiérrez-Antonio, C., Gómez-Castro F. I., de Lira-Flores, J. A., Hernández S. (2017). A review on the production processes of renewable jet fuel. Renew. Sust. Energ. Rev., 79: 709-729. https://doi.org/10.1016/j.rser.2017.05.108

Hájek, M., Kocík, J., Frolich, K., y Vávra, A. (2017). Mg-Fe mixed oxides and their rehydrated mixed oxides as catalysts for transesterification. J. Clean. Prod., 161: 1423-1431. https://doi.org/10.1016/j.jclepro.2017.05.199

Hájek, M., Kutálek, P., Smoláková, L., Troppová, I., Čapek, L., Kubička, D., Kocík J., y Thanh, D.N. (2015). Transesterification of rapeseed oil by Mg-Al mixed oxides with various Mg/Al molar ratio. Chem. Eng. J., 263: 160-167. https://doi.org/10.1016/j.cej.2014.11.006

Hirano, A., Hon-Nami, K., Kunito, S., Hada, M. y Ogushi, Y. (1998). Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal. Today, 45(1-4): 399-404. https://doi.org/10.1016/S0920-5861(98)00275-2

Hossain, N., Zaini, J., Mahlia, T. M. I. y Azad, A. K. (2019). Elemental, morphological and thermal analysis of mixed microalga species from drain water. Renew. Energy, 131: 617-624. https://doi.org/10.1016/j.renene.2018.07.082

Hossain, N., y Morni, N.A.H. (2019). Co-pelletization of microalgae-sewage sludge blend with sub-bituminous coal as solid fuel feedstock. Bioenergy Res., 1: 1-12. DOI:10.1007/s12155-019-10061-2

Hu, Y., Gong, M., Feng, S., Xu (Charles), C. y Bassi, A. (2019). A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production. Renew. Sust. Energ. Rev., 101: 476-492. https://doi.org/10.1016/j.rser.2018.11.037

Huber, G. W., O’Connor, P. y Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A.-G., 329: 120-129. https://doi.org/10.1016/j.apcata.2007.07.002

IEA. (2017). Key world energy statistics. International Energy Agency, Secure, Sustainable Together, 97. (Consultado: 15 de enero, 2020). http://svenskvindenergi.org/wp-content/uploads/2017/12/KeyWorld2017.pdf

ISI Andina. (2020). ISI Andina, Ingeniería y Construcción. (Consultado: 5 febrero, 2020). https://www.isiven.com/costos-de-produccion-de-crudo

Jena, U., Das, K.C. y Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol., 102: 6221-6229. https://doi.org/10.1016/j.biortech.2011.02.057

Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gärtner, C. A. y Dumesic, J. A. (2008). Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 322, (5900): 417-421. https://doi.org/10.1126/science.1159210

Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E. y Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl. Catal. B., 181: 156-196. https://doi.org/10.1016/j.apcatb.2015.07.042

Kumar, S. A. A., Sakthinathan, G., Vignesh, R., Banu, J. R. y Al-Muhtaseb, H. (2019). Optimized transesterification reaction for efficient biodiesel production using Indian oil sardine fish as feedstock. Fuel, 253: 921-929. https://doi.org/10.1016/j.fuel.2019.04.172

Liu, G., Yan, B., y Chen, G., 2013. Technical review on jet production. Renew. Sust. Energ. Rev., 25: 59-70. https://doi.org/10.1016/j.rser.2013.03.025

Liu, C., Liu, J., Zhou, G., Tian, W., y Rong, L. (2013). A cleaner process for hydrocracking of jatropha oil into green diesel. J. TAIWAN INST. CHEM. E., 44(2): 221-227. https://doi.org/10.1016/J.JTICE.2012.10.006

Liu, S., Zhu, Q., Guan, Q., He, L. y Li, W. (2015). Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol., 183: 93-100. https://doi.org/10.1016/j.biortech.2015.02.056

López, D. E., Goodwin, J.G., Bruce, D. A., y Lotero, E. (2005). Transesterification of triacetin with methanol on solid acid and base catalysts. Appl. Catal. A.-G., 295(2): 97-105. https://doi.org/10.1016/J.APCATA.2005.07.055

Lotero, E., Goodwin, Y. G., Bruce, D., Suwannakaran, K., Liu Y. y Lopez, D. E. (2006). The catalysis of biodiesel synthesis. En J. J. Spivey y K. M. Dooley (eds.), Royal Society of Chemistry, Catalysis, 19: 41-84.

Mabee, W. E., Gregg, D. J. y Saddler, J. N. (2005). Assessing the emerging biorefinery sector in Canada. En B. H. Davison, B. R. Evans, M. Finkelstein y J. McMillan (eds.), Appl. Biochem. Biotechnol., 1a ed., vol. (121-124): 765-778). https://doi.org/https://doi.org/10.1007/978-1-59259-991-2_64

Makarfi Isa, Y. y Tinashe Ganda, E. (2018). Bio-oil as a potential source of petroleum range fuels. Renew. Sust. Energ. Rev., 81(1): 69-75. https://doi.org/10.1016/j.rser.2017.07.036

Mo, X., Lotero, E., Lu, C., Liu, Y. y Goodwin, J.G. (2008). A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catal. Lett., 123(1-2): 1-6. https://doi.org/10.1007/s10562-008-9456-y

Monavari, S., Galba, M. y Zacchi, G. (2011). Influence of impregnation with lactic acid on sugar yields from steam pretreatment of sugarcane bagasse and spruce, for bioethanol production. Biomass Bioenergy, 35(7): 3115-3122. https://doi.org/10.1016/j.biombioe.2011.04.016

Naik, S. N., Goud, V. V., Rout, P. K. y Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energ. Rev., 14(2): 578-597. https://doi.org/10.1016/J.RSER.2009.10.003

Nava Bravo, I., Velásquez-Orta, S.B., Cuevas-García, R., Monje-Ramírez, I., Harvey, A., y Orta Ledesma, M. T. (2019). Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation. Fuel, 241: 255-263. https://doi.org/10.1016/J.FUEL.2018.12.071

Onda, A., Ochi, T., y Yanagisawa K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem., 10: 1033-1037. https://doi.org/10.1039/b808471h

Olcay, H., Subrahmanyam, A. V., Xing, R., Lajoie, J., Dumesic, J. A. y Huber, G. W. (2013). Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams. Energy Environ. Sci., 6: 205-216. https://doi.org/10.1039/C2EE23316A

Peters, M., Taylor, J., Gevo, Inc. (2011). Renewable jet fuel blendstock from isobutanol. International Patent WO. 2011140560, noviembre 10.

Primus, C. K. (2015). Design and development of mild combustion. (Consultado: 2 de febrero, 2020). https://www.researchgate.net/publication/285131475_DESIGN_AND_DEVELOPMENT_OF_MILD_COMBUSTION

Raman, J. K. y Gnansounou, E. (2017). Life cycle assessment of vetiver-based biorefinery with production of bioethanol and furfural. Life-Cycle Assessment of Biorefineries, 147-165. https://doi.org/10.1016/B978-0-444-63585-3.00005-X

Rawat, I., Kumar, R. R., Mutanda, T. y Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy, 103: 444-467. https://doi.org/10.1016/j.apenergy.2012.10.004

Renovetec. (2013). Plantas de biomasa. (Consultado: 29 de enero, 2020). http://www.plantasdebiomasa.net/bioetan.html#top

Ross, A. B., Biller, P., Kubacki, M. L., Li, H., Lea-Langton, A. y Jones, J. M. (2010). Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 89 (9): 2234-2243. https://doi.org/10.1016/j.fuel.2010.01.025

Rubio-Arroyo, M. F., Vicanco-Loyo, P., Juárez, M., Poisot, M. y Ramírez-Galicia, G. (2011). Bio-ethanol obtained by fermentation process with continuous feeding of yeast. J. MEX. CHEM. SOC., 55(4): 242-245. (Consultado: 5 de febrero del 2020) ISSN 1870-249X. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2011000400010&lng=es&tlng=en

Sajjadi, B., Chen, W.-Y., Raman, A. A. A. y Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sust. Energ. Rev., 97: 200-232. https://doi.org/10.1016/j.rser.2018.07.050

Sanna, A. (2014). Advanced biofuels from thermochemical processing of sustainable biomass in Europe. Bioenergy Res., 7 (1): 36-47. https://doi.org/10.1007/s12155-013-9378-4

Serio, M. Di, Tesser, R., Pengmei, L., y Santacesaria, E. (2008). Heterogeneous catalysts for biodiesel production. Energy Fuels, 22(9): 207-217. https://doi.org/10.1021/ef700250g

Shah, Z., Veses, R. C., Vaghetti, J. C. P., Amorim, V. D. A. y Da Silva, R. (2019). Preparation of jet engine range fuel from biomass pyrolysis oil through hydrogenation and its comparison with aviation kerosene. Int. J. Green Energy., 16(4): 350-360. https://doi.org/10.1080/15435075.2019.1566730

Sinha, A. K., Sibi, M. G., Naidu, N., Farooqui, S. A., Anand, M., y Kumar, R. (2014). Process intensification for hydroprocessing of vegetable oils: experimental study. Ind. Eng. Chem. Res., 53(49): 19062-19070. https://doi.org/10.1021/ie502703z

Singh, R., Balagurumurthy, B., y Bhaskar, T. (2015). Hydrothermal liquefaction of macro algae: effect of feedstock composition. Fuel, 146 :69-74. https://doi.org/10.1016/j.fuel.2015.01.018

Srifa, A., Faungnawakij, K., Itthibenchapong, V. y Assabumrungrat, S. (2015). Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chem. Eng. J., 278: 249-258. https://doi.org/10.1016/j.cej.2014.09.106

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S. y Hara M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci., 12: 1029-1034. https://doi.org/10.1016/j.solidstatesciences.2010.02.038

Suresh, S. K., Suresh, P. V. y Kudre, T. G. (2019). 4-Prospective ecofuel feedstocks for sustainable production. En Azad, K. (ed.), Advances in Eco-Fuels for a Sustainable Environment. Woodhead Publishing Series in Energy, 89-117. https://doi.org/10.1016/B978-0-08-102728-8.00004-8

Takagaki, A., Tagusagawa, C. y Domen, K. (2008). Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem. Commun., 42: 5363-5365. https://doi.org/10.1039/b810346a

Tan, I. S., Lam, M. K., y Lee K. T. (2013). Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym., 94(1): 561-566. https://doi.org/10.1016/j.carbpol.2013.01.042

Taylor, J. D., Jenni, M. M. y Peters, M. W. (2010). Dehydration of fermented isobutanol to produce renewable chemicals and fuels. Top. Catal., 53:1224-1230. https://doi.org/10.1007/s11244-010-9567-8

Tian, C., Li, B., Liu, Z., Zhang, Y. y Lu H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sust. Energ. Rev., 38: 933-950. https://doi.org/10.1016/j.rser.2014.07.030

Trakarnpruk, W. y Porntangjitlikit, S. (2008). Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renew. Energy, 33(7): 1558-1563. https://doi.org/10.1016/j.renene.2007.08.003

Verma, D., Rana, B. S., Kumar, R., Sibi, M. G. y Sinha, A. K. (2015). Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Appl. Catal. A: Gen., 490: 108-116. https://doi.org/10.1016/j.apcata.2014.11.007

Virent Bio Forming, (2020). (Consultado: 1 junio, 2020). https://www.virent.com/technology/bioforming

Vo, T. K., Lee, O. K., Lee, E. Y., Kim C. H., Seo J. W., Kim J. y Kim S. S. (2016). Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101. Chem. Eng. J., 306: 763-771. https://doi.org/10.1016/j.cej.2016.07.104

Xu, D., Lin, G., Guo, S., Wang, S., Guo, Y., y Jing, Z. (2018). Catalytic hydrothermal of algae and upgrading of biocrude: A critical review. Renew. Sust. Energ. Rev., 97: 103-118. https://doi.org/10.1016/j.rser.2018.08.042

Xu, Y., Zheng, X., Yu, H. y Hu, X. (2014). Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Bioresour. Technol., 156: 1-5. https://doi.org/10.1016/j.biortech.2014.01.010

Wang, B., Li, Y., Wu, N. y Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechol., 79(5): 707-718. https://doi.org/10.1007/s00253-008-1518-y

Wang, W. C. y Tao, L. (2016). Bio-jet fuel conversion technologies. Renew. Sust. Energ. Rev., 53: 801-822. https://doi.org/10.1016/j.rser.2015.09.016

Yang, Y., Luo, H., Tong, G., Smith, K. J. y Tye, C. T. (2008). Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures. Chin. J. Chem. Eng., 16(5): 733-739. https://doi.org/10.1016/S1004-9541(08)60148-2

Zhan, N., Hu Y., Li, H., Yu, D., Han, Y., Huang, H. (2010). Lanthanum-phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis. Catal. Commun., 11(7): 633-637. https://doi.org/10.1016/j.catcom.2010.01.011

Zhang, J., Chen, S., Yang, R. y Yan, Y. (2010). Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel, 89(10): 2939-2944. https://doi.org/10.1016/J.FUEL.2010.05.009

Zhang, X1, Lei, H., Zhu, L., Wei, Y., Liu, Y., Yadavalli, G., Yan, D., Wu, J. y Chen S. (2015). Production of renewable jet fuel range alkanes and aromatics via integrated catalytic processes of intact biomass. Fuel, 160:375-385. https://doi.org/10.1016/j.fuel.2015.08.006

Publicado
2021-08-25
Cómo citar
Cuevas-García, R., & Nava Bravo, I. (2021). Producción de combustibles renovables. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(30), 1e-50e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69635