Nanomateriales integrados para el desarrollo de equipo de prevención primaria ante la COVID-19

  • Rocío G. de la Torre S. Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales
  • Israel Betancourt Universidad Nacional Autónoma de México, Instituto de Investigaciones en Materiales
Palabras clave: Covid-19, prevención primaria, nanomateriales

Resumen

El interés de esta revisión surge del impacto que ha tenido el Covid-19 a nivel mundial. Se proporcionan antecedentes relacionados con la descripción general de los virus, hasta llegar al SARS-CoV-2. Dentro de estos se menciona el posible origen de la pandemia, las recomendaciones emitidas por la Organización Mundial de la Salud (OMS), y, finalmente, las alternativas que se tienen actualmente para combatir al SARS-CoV-2 a partir de la experiencia obtenida ante otros virus y bacterias. Dentro de estas opciones, se dan a conocer algunas posibles áreas de aplicación de la nanotecnología, como herramienta de diagnóstico, tratamiento y/o prevención. Finalmente, la revisión se enfoca en mencionar algunos de los desarrollos realizados en diferentes países para la elaboración de equipo de protección personal (EPP) y material filtrante en general, como mecanismo de prevención primaria ante infecciones virales.

Citas

Andersen, K., Rambaut, A., Lipkin, W., Holmes. E. y Garry, R. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26: 450-455. https://doi.org/10.1038/s41591-020-0820-9

Anderson, L., Schneider, E. (2012). Goldman’s Cecil Medicine. Elsevier. https://doi.org/10.1016/C2009-0-42832-0

Bhattacharjee, S., Joshi, R., Chughtai, A. A., Macintyre, C. R. (2019). Graphene modified multifunctional personal protective clothing. Adv. Mater. Interfaces, 6, 1900622. https://doi.org/10.1002/admi.201900622

Biao He, Yuzhen Zhang, Lin Xu, Weihong Yang, Fanli Yang, Yun Feng, Lele Xia, Jihua Zhou, Weibin Zhen, Ye Feng, Huancheng Guo, Hailin Zhang, Changchun Tu. (2014). Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. Journal of Virology, 88(12): 7070-7082. S. https://doi.org/10.1128/JVI.00631-14

BioOptics World. (2020). UV light-activated coating for masks could trap, kill Covid-19. https://www.bioopticsworld.com/biophotonics-tools/article/14173860/uv-lightactivated-coating-for-masks-could-trap-kill-covid19

Broglie, B. Alston, C. Yang, L. Ma, A. F. Adcock, W. Chen, L. Yang, (2015). Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus–like particles. PLOS ONE, 10: e0141050. https://doi.org/10.1371/journal.pone.0141050

Callaway, E. y David Cyranoski. (2020). China coronavirus: Six questions scientists are asking. Nature, 577: 605-607. https://doi.org/10.1038/d41586-020-00166-6

Carroll, K., Jeffery A. Hobden, Steve Miller, Stephen A. Morse, Timothy A. Mietzner, Barbara Detrick, Thomas G. Mitchell, James H. McKerrow, Judy A. Sakanari. (2016). Microbiología Médica. Mc Graw Hill.

Chen, K.T., D. Ray, Y.-H. Peng, Y.-C. Hsu. (2013). Preparation of Cu–Ag core–shell particles with their anti-oxidation and antibacterial properties. Current Applied Physics, 13: 1496-1501.

Colimon K. Niveles de Prevención. http://issuu.com/viejo03/docs/nameb7c044

Cui, J., Li, F., Shi, Z. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17:181-192. https://doi.org/10.1038/s41579-018-0118-9

Deng Xiaoci. (2020). China researchers develop Covid-19 virus-fighting material. Globaltimes.cn. https://www.globaltimes.cn/content/1184240.shtml

Dhende, V. P., I.R. Hardin, I. R., J. Locklin, J. (2012). Durable antimicrobial textiles: types, finishes and applications. En: P. A. Annis (ed.), Understanding and improving the durability of textiles. Woodhead Publishing, 145-173.

Di Gianvincenzo, P., Marradi, M., Martínez-Ávila, O. M., Bedoya, L. M., Alcamí, J., Penadés, S. (2010). Gold nanoparticles capped with sulfate–ended ligands as anti-HIV agents. Bioorganic Med. Chem. Lett., 20: 2718-2721. https://doi.org/10.1016/j.bmcl.2010.03.079

Dinca, P., B. Butoi, M. Lungu, C. Porosnicu, I. Jepu, C. Staicu, C. Lungu, A. Niculescu, I. Burducea, O. Trusca, M. Diaconu, I. Cretescu, G. Soreanu. (2020). Antibacterial efficiency of stainless-steel grids coated with Cu-Ag by thermionic vacuum arc method. Coatings, 10: 322. https://doi.org/10.3390/coatings10040322

Dowell, S. F., Simmerman, J. M., Erdman, D. D., Wu, J. -S. J., Chaovavanich,. A., Javadi, M., Yang, J.-Y., Anderson, L. J., Tong, S., Ho, M. S. (2004). Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin. Infect. Dis. 39: 652-657. https://doi.org/10.1086/422652

Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho–Bragado, A., Gao, X., Lara, H. H., Yacamán, M. J. (2005). Interaction of silver nanoparticles with HIV-1. Nanobiotechnology, 3(6). https://doi.org/10.1186/1477-3155-3-6

Ghaffari, H., Tavakoli, A., Moradi, A., Tabarraei, A., Bokharaei-Salim, F., Zahmatkeshan, M., Farahmand, M., Javanmard, D., S. J. Kiani, M. Esghaei, V. Pirhajati-Mahabadi, S. H. Monavari, A. Ataei-Pirkooh. (2019). Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. Journal of Biomedical Science, 26: 70. https://doi.org/10.1186/s12929-019-0563-4

Global Preparedness Monitoring Board, GPMB. (2019). A world at risk. Annual report on global preparedness for health emergencies. Global Preparedness Monitoring Board of the World Health Organization, Geneva. https://apps.who.int/gpmb/assets/annual_report/GPMB_annualreport_2019.pdf?utm_source=mandiner&utm_medium=link&utm_campaign=mandiner_202004

Gorbunov, B. (2020). Aerosol particles laden with Covid-19 travel over 30 m distance. In press. https://doi.org/10.20944/preprints202004.0546.v1

Harada, L. K. E. C. Silva, W. F. Campos, F. S. del Fiol, M. Vila, K. Dąbrowska, V. N. Krylov, V. M. Balcão. (2018). Biotechnological applications of bacteriophages: State of the art. Microbiological Research, 212-213: 38-58. https://doi.org/10.1016/j.micres.2018.04.007

Hoffmann, M. et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically-proven protease inhibitor. Cell, https://doi.org/10.1016/j.cell.2020.02.052

Hospimedica Daily Clinical News. (2020). Revolutionary new carbon-based material captures and destroys coronavirus. Mayo, 2020. https://www.hospimedica.com/covid-19/articles/294782226/index.php

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5

Huang, H., Fan, M. Li, H. -L. Nie, F. -B. Wang, H. Wang, R. Wang, J. Xia, X. Zheng, X. Zuo, J. Huang. (2020). Covid-19: A call for physical scientists and engineers. ACS Nano. 14: 3747-3754. https://doi.org/10.1021/acsnano.0c02618

Humphreys, M. (2018). The influenza of 1918: Evolutionary perspectives in a historical context. Evolution, Medicine and Public Health, 1: 219-229. https://doi.org/10.1093/emph/eoy024

Ji, W., Wang, W., Zhao, X., Zai J., Li, X. (2020). Cross-species trasnmission of the newly identified coronavirus 2019-n-CoV. Journal of Medical Virology, 433-440. https://doi.org/10.1002/jmv.25682

Khalaj, M. Kamali, Z. Khodaparast, A. Jahanshahi. (2018). Copper–based nanomaterials for environmental decontamination – An overview on technical and toxicological aspects. Ecotoxicology and Environmental Safety, 148: 813-824. https://doi.org/10.1016/j.ecoenv.2017.11.060

Konda, A. Prakash, G. A. Moss, M. Schmoldt, G. D. Grant, S. Guha. (2020). Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano. https://doi.org/10.1021/acsnano.0c03252

Krähling, V., Stein, D. A., Spiegel, M., Weber, F., Mühlberger, E. (2009). Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. J. Virol, 83: 2298-2309. https://doi.org/10.1128/JVI.01245-08

Leavell, S. y Clark, E. G. (1976). Medicina preventiva. San Pablo: McGraw-Hill.

Ledford, H. (2020). How does Covid-19 kill? Uncertainty hampers doctor’s ability to choose treatments. Nature, 580: 311-312. https://doi.org/10.1038/d41586-020-01056-7

Liu, P., Chen, W., Chen J. (2019). Viral metagenomics revealed sendai virus and coronavirus infection of Malayan pangolins (Manis javanica). Viruses, (11)11: 979. https://doi.org/10.3390/v11110979

Lu, R. W. Y. Sun, R. Chen, C. K. Hui, C. M. Ho, J. M. Luk, G. K. K. Lau, C. M. Che. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther, 13.

Ma, J. (2020). Coronavirus: China’s first confirmed Covid-19 case traced back to November 17. South China Morning Post. Marzo 13, 2020. https://www.scmp.com/news/china/society/article/3074991/coronavirus-chinas-first-confirmed-covid-19-case-traced-back

MacLachlan, N., y Dubovi, E. (2011). Fenner’s veterinary, virology. Elsevier. https://doi.org/10.1016/C2009-0-01816-9

Manuel, C. S., M. D. Moore, L. A. Jaykus. (2015). Destruction of the capsid and genome of GII.4. Human norovirus occurs during exposure to metal alloys containing copper. Applied and Environmental Microbiology, 81: 4940. K. E. Wommack (ed.). https://doi.org/10.1128/AEM.00388-15

Masters, Paul. (2006). The molecular biology of coronaviruses. Advances in Virus Research, 66: 193-292. https://doi.org/10.1016/S0065-3527(06)66005-3

Menachery, Vineet D., Boyd, L., Yount, Jr., Kari Debbink, Sudhakar Agnihothram, Lisa E. Gralinski, Jessica A. Plante, Rachel L. Graham, Trevor Scobey, Xing-Yi Ge, Eric F. Donaldson, Scott H. Randell, Antonio Lanzavecchia, Wayne A. Marasco, Zhengli-Li Shi y Ralph S. Baric. (2015). A SARS–like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine, 21(12): 1508-1513. https://doi.org/10.1038/nm.3985

Mesel-Lemoine, M., Jean Millet, Pierre-Olivier Vidalain, Helen Law, Astrid Vabret, Valérie Lorin, Nicolas Escriou, Matthew L. Albert, Béatrice Nal, y Frédéric Tangy. (2012). A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. Journal of Virology, 86(14): 7577-7587. https://doi.org/10.1128/JVI.00269-12

Molar, R. Candanosa. (2020). Here’s how nanoparticles could help us get closer to a treatment for Covid-19. News at Northeastern. Marzo. https://news.northeastern.edu/2020/03/04/heres-how-nanoparticles-could-help-us-get-closer-to-a-treatment-for-covid-19/

Nanotech. (2020). https://statnano.com//news/67531/Coronavirus-Nanotech-Surface-Sanitizes-Milan-with-Nanomaterials-Remaining-Self-sterilized-for-Years

Nowak, A., J. Szade, E. Talik, M. Zubko, D. Wasilkowski, M. Dulski, K. Balin, A. Mrozik, J. Peszke. (2016). Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles. Materials Characterization, 117: 9-16.

OMS. (2008). La atención primaria de la salud. Más necesaria que nunca. Informe sobre la salud en el mundo. http://www.who.int/whr/2008/08_report_es.pdf 154 pp.

Pulido Salgado, M. (2020). Mantenerse bien informado: la mejor estrategia contra el SARS-CoV-2. https://www.investigacionyciencia.es/noticias/mantenerse-bien-informado-la-mejor-estrategia-contra-el-sars-cov-2-18416

Regalado, A. (2020). La vacuna contra el coronavirus no estará lista hasta 2021 como mínimo. MIT Technology Review. Marzo.

Reglamento Sanitario Internacional. Organización Mundial de la Salud (OMS). (2005). https://www.who.int/ihr/IHR_2005_es.pdf

Sean Wei Xiang Ong, Yian Kim Tan, Po Ying Chia, Tau Hong Lee, Oon Tek Ng, Michelle Su Yen Wong y Kalisvar Marimuthu. (2020). Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 323816): 1610-1612. https://doi.org/10.1001/jama.2020.3227

Sportelli, M. C., Longano, D., Bonerba, E., Tantillo, G., Torsi, L., Sabbatini, L., Cio, N., Ditaranto, N. (2020). Electrochemical preparation of synergistic nanoantimicrobials. Molecules, 25(1): 49. https://doi.org/10.3390/molecules25010049

Stephen N. J. Korsman, Gert U. van Zyl, Louise Nutt, Monique I. Andersson, Wolfgang Preiser. (2012). Human coronaviruses. Virology. https://doi.org/10.1016/B978-0-443-07367-0.00040-9

Sundberg, K., Champagne, V., McNally B., Helfritch D., S. R. (2015). Effectiveness of nanomaterial copper cold spray surfaces on inactivation of influenza A virus. J. Biotechnol. Biomater, 5: 205. 14040-14045. https://doi.org/10.1073/pnas.0506735102

Swapan Kumar Ghosh. (2020). Anti-viral surface coating to prevent spread of novel coronavirus (Covid-19) through touch. https://www.coatingsworld.com/content-microsite/cw_covid-19/2020-04-15/anti-viral-surface-coating-to-prevent-spread-of-novel-coronavirus-covid-19-through-touch

Terris, M. (1990). Public health policy for the 1990s. Annu. Rev. Public Health, 11: 39-51.

Tsan–Yuk, T., Ho–Hin, M., Zhu, H., Tong, Y., Ni, X., Liao, Y., Wei, W., Cheung, W., Li, W., Li, L., Leung, G., Holmes, E., Hu, Y y Guan, Y. (2020). Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. https://doi.org/10.1038/s41586-020-2169-0

Tse, L., Meganck, R., Graham, R., Baric, R. (2020). The current and future state of vaccines, antivirals and gene therapies against emerging coronaviruses. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00658

Ungur, G., Hruza, J. (2017). Modified polyurethane nanofibers as antibacterial filters for air and water purification. RSC Adv., 7: 49177-49187. https://doi.org/10.1039/C7RA06317B

Valodkar, M., S. Modi, A. Pal, S. Thakore. (2011). Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach. Materials Research Bulletin, 46: 384-389. https://doi.org/10.1016/j.materresbull.2010.12.001

Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I. et al. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382(16): 1564-1567. https://doi.org/10.1101/2020.03.09.20033217

Vignolo, Julio, Mariela Vacarezza, Cecilia Alvarez, Alicia Sosa. (2011). Niveles de atención, de prevención y atención primaria de la salud. Arch Med Interna, 33(1): 7-11.

Vincent, M., R. E. Duval, P. Hartemann, M. Engels–Deutsch. (2018). Contact killing and antimicrobial properties of copper. Journal of Applied Microbiology, 124: 1032-1046. https://doi.org/10.1111/jam.13681

Warnes, S. L., Little, Z. R., Keevil, C. W. (2015). Human coronavirus 229E remains infectious on common touch surface materials. American Society for Microbiology. 6(6): 1-10. https://doi.org/10.1128/mBio.01697-15

Weiss, S. y Leibowitz, J. (2011). Coronavirus pathogenesis. Advances in Virus Research, 81:85-164. https://doi.org/10.1016/B978-0-12-385885-6.00009-2

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z., W., Tian, J. H., Pei, Y. Y. et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature. https://doi.org/10.1038/s41586-020-2008-3

Wu, Y., Chen, Ch., Chan, Y. (2020). The outbreak of Covid-19: An overview. Journal of the Chinese Medical Association. https://doi.org/10.1097/JCMA.0000000000000270

Yang, K., L. Chen, Y. -C. Chen, L. Kang, J. Yu, Y. Wang, C. Lu, T. Mashimo, A. Yoshiasa, C. -H. Lin. (2019). Homogeneously alloyed nanoparticles of immiscible Ag-Cu with ultrahigh antibacterial activity. Colloids and Surfaces B: Biointerfaces, 180: 466-472. https://doi.org/10.1016/j.colsurfb.2019.05.018

Zhang, T., Wu, Q., Zhang, Z. (2020). Pangolin homology associated with 2019-nCoV. bioRxiv. Preprint. https://doi.org/10.1101/2020.02.19.950253

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R.,Zhu, Y., Li, B., Huang, C.L. et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270-273. https://doi.org/10.1038/s41586-020-2012-7

Publicado
2020-06-11
Cómo citar
de la Torre S., R., & Betancourt, I. (2020). Nanomateriales integrados para el desarrollo de equipo de prevención primaria ante la COVID-19. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 14(27), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2021.27.69652