Obtención de nanocelulosa a partir de residuos postcosecha

Palabras clave: nanotecnología, hidrólisis, celulosa, nanocristales, nanopartículas, residuos

Resumen

 

El principal problema que enfrentan los residuos agroindustriales es la falta de conciencia ambiental de los productores, sumado a los pocos recursos destinados al desarrollo de nuevas tecnologías y las pobres políticas gubernamentales para el manejo de dichos residuos. Lo anterior genera fuentes puntuales de contaminantes atmosféricos y nos hace cómplices del cambio climático por la emisión de gases efecto invernadero y contaminantes climáticos de vida corta, como el carbono negro. En las últimas décadas, se ha puesto gran interés por el descubrimiento del nuevo mundo de las nanopartículas y en particular el de la nanocelulosa. Algunos logros, ya son visibles y tienen múltiples aplicaciones. Pero si bien es cierto que hay numerosos avances en la obtención de estas nanomaterias a partir de distintos tipos de fibras naturales o residuos postcosecha, aún falta investigación para lograr la factibilidad de tales tecnologías, principalmente por los gastos energéticos y los costos de producción. En esta revisión se ofrece un resumen de diversos ensayos de laboratorio que reconocen la posibilidad de obtención de nanocelulosa a partir de residuos postcosecha, mediante diversos métodos, con el fin de despertar el interés por perfeccionar la logística de las técnicas y la eficiencia de los procesos que se ofrecen a partir de diferentes residuos agroindustriales.         

Citas

Araya Rivera, H. A. (2016). Evaluación técnico-económica de alternativas tecnológicas para la fabricación de nanofibras de celulosa de paja de trigo a escala industrial, tesis para optar por el título de ingeniero industrial. Universidad Andrés Bello. Facultad de ingeniería. 110.pp. http://repositorio.unab.cl/xmlui/handle/ria/9160

Abdul K. H. P. S., Bhat A. H., Ireana Y. A. F. (2012). Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87: 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078

Abitbol T., Rivkin A., Cao Y., Nevo Y., Abraham E., Ben-Shalom T., Lapidot S., Shoseyov O. (2016). Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 39:76-88. https://doi.org/10.1016/j.copbio.2016.01.002

Abraham E., Deepa B., Pothan L., Jacob M., Thomas S., Cvelbar U., Anandjiwalac. R. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 86(4): 1468-75. https://doi.org/10.1016/j.carbpol.2011.06.034

Akira I., Tsuguyuki S. y Hayaka F. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1): 71-85. https://doi.org/10.1039/C0NR00583E

Alemdar, M. Sain. (2008). Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresour. Technol., 99: 1664-1671, https://doi.org/10.1016/j.biortech.2007.04.029

Allan, G. G, Krieger B. B, Work D. W. (1980). Dielectric loss microwave degradation of polymers: Cellulose. Journal of Applied Polymer Science. 25: 1839-59. https://doi.org/10.1002/app.1980.070250904

An, V. N., Nhan, H. T. C., Tap, T. D., Van, T. T. T. y Van Viet, P. (2020). Extraction of high crystalline nanocellulose from biorenewable sources of vietnamese agricultural wastes. Journal of Polymers and the Environment, 1-10. https://doi.org/10.1007/s10924-020-01695-x

Angellier H., Putaux J. L, Molina‐Boisseau S., Dupeyre D., Dufresne A. (2005). Starch nanocrystal fillers in an acrylic polymer matrix. Macromolecular Symposia: Wiley Online Library. p. 95-104. https://doi.org/10.1002/masy.200550310

Araki J., Wada M., Kuga S., Okano T. (1998). Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142(1): 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X

Asim, M. (2018). Nanocellulose: preparation method and applications, cap. 11, 261-276.

Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Osterberg, M., y Wagberg, L. (2009). Nanoscale cellulose films with different crystallinities and mesostructures. Their surface properties and interaction with water. Langmuir, 25(13), 7675-7685. https://doi.org/10.1021/la900323n

Azizi Samir M. A. S, Alloin F., Dufresne A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2): 612-626. https://doi.org/10.1021/bm0493685

Bettaieb, F., Khiari, R., Hassan, M. L., Belgacem, M. N., Bras, J., Dufresne, A., Mhenni, M. F. (2015). Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind. Crops Prod., 72: 175-182. https://doi.org/10.1016/j.indcrop.2014.12.038

Barcelos, C. A., Rocha, V. A., Groposo, C., Castro, A. M., Pereira, N. Jr. (2015). Enzymes and accessory proteins involved in the hydrolysis of lignocellulosic biomass for bioethanol production. Mycol. Curr. Futur. Dev., 1: 23-56

Beck-Candanedo S., Roman M., Gray D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2): 1048-54. https://doi.org/10.1021/bm049300p

Beltramino H. F. (2016). Enzymatic-assisted preparation of nanocrystalline cellulose from non-wood fibers. Tesis doctoral. Universitat Politècnica de Catalunya. Departament d’Enginyeria Tèxtil i Paperera. http://hdl.handle.net/2117/107068

Bester, L. M. (2018). Development and optimisation of a process for cellulose nanoparticle production from waste paper sludge with enzymatic hydrolysis as an integral part. Tesis doctoral. Stellenbosch: Stellenbosch University. http://hdl.handle.net/10019.1/105039

Bhat, M. K., Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv., 15: 583-620.

Bhawna S., El Barbary., H., Barakat M. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate polymers, 134: 581-589. https://doi.org/10.1016/j.carbpol.2015.08.031

Bolio L. G. I. Valadez-G. A; Veleva L. y Adreeva A. (2011). Whiskers de celulosa a partir de residuos agroindustriales de banano: obtención y caracterización. Revista Mexicana de Ingeniería Química, 10(2): 291-299. http://www.scielo.org.mx/pdf/rmiq/v10n2/v10n2a13.pdf

Bondeson D., Mathew A., Oksman K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13: 171-80. https://doi.org/10.1007/s10570-006-9061-4

Brinchi, L., Cotana, F., Fortunati, E., y Kenny, J. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1), 154-169. https://doi.org/10.1016/j.carbpol.2013.01.033

Budarin V. L., Clark J. H., Lanigan B. A., Shuttleworth P., Macquarrie D. J. (2010). Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource technology. 101: 3776-3739. https://europepmc.org/article/MED/20093017

Carchi M. D. (2014). Aprovechamiento de los residuos agrícolas provenientes del cultivo de banano para obtener nanocelulosa. Tesis para obtener el grado de ingeniero químico. Universidad de Cuenca. Ecuador. 77pp. http://dspace.ucuenca.edu.ec/handle/123456789/5292

Camargo, L. A., Pereira, S., Correa, A. C., Farinas, C. S., Marconcini, J. M. y Mattoso, L. H. (2016). Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. BioEnergy Research, 9: 894-906.

Carroll, A. y Somerville, C. (2009). Cellulosic biofuels. Annual Review of Plant Biology, 60(1): 165-182. https://doi.org/10.1146/annurev.arplant.043008.092125

Cataño R. E. H. (2009). Obtención y caracterización de nanofibras de celulosa a partir de desechos agroindustriales. Trabajo para obtener el grado de ingeniero químico. Universidad Nacional de Colombia Facultad de Minas. Escuela de Procesos y Energía Sede Medellín. https://repositorio.unal.edu.co/handle/unal/2582

Cazaurang, M., Peraza, S., Cruz, R. C. A. (1990). Dissolving grade pulps from henequen fiber. Cellulose Chemistry and Technology, 24(5): 629-638. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5214310

Cerrutti, P., y Foresti, M. L. (2016). La nanocelulosa bacteriana: una gran promesa para aplicaciones en el área biomédica. Iberoamérica Divulga, 1. Facultad de Ingeniería. UBA. ITPN. CONICET. https://www.conicet.gov.ar/nanocelulosa-bacteriana-una-gran-promesa-para-aplicaciones-en-el-area-biomedica/

Chandra, J., George, N., Narayanankutty, S.K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym., 142: 158-166. https://doi.org/10.1016/j.carbpol.2016.01.015

Charreau, H., Foresti, M. L. y Vazquez, A. (2013). Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents on Nanotechnology, 7: 56-80.

Chen, L., Zhu, J. Y., Baez, C., Kitin, P., Elder, T. (2016a). Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18(13): 3835-3843. https://doi.org/10.1039/c6gc00687f

Chen, Y., Wan, J., Wu, Q., Ma, Y., Huang, M. (2016b). Effect of recycling on fundamental properties of hardwood and wheat straw pulp fibers, and of handsheets made thereof. Cellul. Chem. Technol. 50(910): 1061-1067.

Chen, Y. W., Lee, H. V., Juan, J. C., Phang, S. M. (2016c). Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr.Polym. 151: 1210-1219. https://doi.org/10.1016/j.carbpol.2016.06.083

Cheng, M., Qin, Z., Chen, Y., Hu, S., Ren, Z., Zhu, M. (2017). Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustainable Chemistry & Engineering, 5(6): 4656-4664. https://doi.org/10.1021/acssuschemeng.6b03194

Cherian B. M, Pothan L. A., Nguyen-Chung T., Mennig Gn, Kottaisamy M., Thomas S. (2008). A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. Journal of Agricultural and Food Chemistry, 56(14): 5617-27. https://doi.org/10.1021/jf8003674

Cherian B. M., Leão A. L., De Souza S. F., Thomas S., Pothan L. A., Kottaisamy M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3):720-725. https://doi.org/10.1016/j.carbpol.2010.03.046

Clark D.E., Folz D.C., West J.K. (2000). Processing materials with microwave energy. Materials Science and Engineering: A, 287(2):153-158. https://doi.org/10.1016/S0921-5093(00)00768-1

Cury R, K., Aguas M, Y., Martinez M, A., Olivero V, R., y Chams Ch, L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal – RECIA, 9(S1), 122-132. https://doi.org/10.24188/recia.v9.nS.2017.530

De Campos A., Correa A. C., Cannella D., De M. Teixeira E., Marconcini J. M., Dufresne A., Luiz H. C. Mattoso, P. C., y Sanadi A. R. (2013). Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose, 20: 1491-1500. https://doi.org/10.1007/s10570-013-9909-3

De Figueirêdo, M. C. B., de Freitas Rosa, M., Ugaya, C. M. L., de Souza, M. D. S. M., Da Silva Braid, A. C. C. y De Melo, L. F. L. (2012). Life cycle assessment of cellulose nanowhiskers. Journal of Cleaner Production, 35: 130-139. https://doi.org/10.1016/j.jclepro.2012.05.033

De Morais Teixeira., Corrêa, A. C., Manzoli, A., De Lima Leite, F., De Oliveira, C. R., y Mattoso, L. H. (2016). Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17(3): 595-606. https://doi.org/10.1007/s10570-010-9403-0

Deepa B., Abraham E., Cherian B. M., Bismarck A., Blaker J. J, Pothan L. A., Lopes L. A., Ferreira de S. S., Kottaisamy M. (2011). Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource technology, 102 (2): 1988-97. https://doi.org/10.1016/j.biortech.2010.09.030

Dong X. M, Revol J. F., Gray D. G. (1998). Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 5: 19-32. https://doi.org/10.1023/A:1009260511939

EcuRed (2015). Nanocelulosa. https://www.ecured.cu/index.php?title=Nanocelulosa&oldid=2541280 .

Edgar, C. D. y Gray, D. G. (2003). Smooth model cellulose I surfaces from nanocristal suspensions. Cellulose, 10: 299-306. https://doi.org/10.1023/A:1027333928715

Eichhorn S., Dufresne A., Aranguren M., Marcovich N., Capadona J., Rowan S., Weder C., Thielemans W., Roman M., Renneckar S., Gindl W., Veigel S., Keckes J., Yano H., Abe K., Nogi M., Nakagaito A. N., Mangalam A., Simonsen J., Benight A. S., Bismarck A., Berglund L. A. y Peijs T. (2010). Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45: 1-33. https://link.springer.com/article/10.1007/s10853-009-3874-0

Espino, E., Cakir, M., Domenek, S., Román-Gutiérrez, A. D., Belgacem, N., Bras, J. (2014). Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind. Crops Prod., 62: 552-559. https://doi.org/10.1016/j.indcrop.2014.09.017

Espinosa, E., Tarrés, Q., Delgado-Aguilar, M., González, I., Mutjé, P., Rodríguez, A. (2016). Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose, 23(1): 837-852. https://doi.org/10.1007/s10570-015-0807-8

Fan J., De Bruyn M., Budarin V. L., Gronnow M. J., Shuttleworth P. S., Breeden S., Duncan J. Macquarrie D. J. y James H. Clark J. H. (2013). Direct microwave-assisted hydrothermal depolymerization of cellulose. Journal of the American Chemical Society, 135 (32): 11728-11731. https://doi.org/10.1021/ja4056273

Faradilla, R. F., Lee, G., Rawal, A., Hutomo, T., Stenzel, M. H., Arcot, J. (2016). Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose, 23(5): 3023-3037. https://doi.org/10.1007/s10570-016-1025-8

Filson, P. B., Dawson-Andoh, B. E., Schwegler-Berry, D. (2009). Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem., 11: 1808-1814.

Flauzino Neto W. P, Silvério H. A, Dantas N. O, Pasquini D. (2013). Extraction and characterization of cellulose nanocrystals from agro-industrial residue–soy hulls. Industrial Crops and Products, 42: 480-488. https://doi.org/10.1016/j.indcrop.2012.06.041

Frone A. N., Panaitescu D. M., Donescu D. (2011). Some aspects concerning the isolation of cellulose micro-and nano-fibers. UPB Buletin Stiintific, Series B: Chemistry and Materials Science, 73 (2): 133-52. https://www.scientificbulletin.upb.ro/rev_docs/arhiva/rez77363.pdf

Galeana O. A. (2017). Aislamiento de nanofibrillas de celulosa a partir de residuos sólidos orgánicos agrícolas para la producción de biomateriales que puedan sustituir a las fibras sintéticas. Tesis de maestría en ingeniería ambiental. Universidad Nacional Autónoma de México. 118 pp. https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000768260

Gerbec J. A., Magana D., Washington A., Strouse G. F. (2005). Microwave-enhanced reaction rates for nanoparticle synthesis. Journal of the American Chemical Society, 127(45): 15791-800. https://doi.org/10.1021/ja052463g

Ghanbarian, R. M., Nabizadeh, S. Nasseri, F., Shemirani, A. H., Mahvi, M. H., Beyki, A. M. (2017). Potential of amino-riched nano-structured for biosorption of toxic Cr (VI): modeling, kinetic, equilibrium and comparing studies. Int. J. Biol. Macromol. 104: 465-480, https://doi.org/10.1016/j.ijbiomac.2017.06.060

Guiotoku M., Rambo C., Hansel F., Magalhães W., Hotza D. (2009). Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Materials Letters, 63(30): 2707-2709. https://doi.org/10.1016/j.matlet.2009.09.049

Ha S. H., Mai N. L., An G., Koo Y.-M. (2011). Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresource technology, 102(2): 1214-1219. https://doi.org/10.1016/j.biortech.2010.07.108

Haafiz, M. M., Eichhorn, S. J., Hassan, A. y Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate polymers, 93(2): 628-634. https://doi.org/10.1016/j.carbpol.2013.01.035

Habibi, Y., (2014). Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev., 43(5): 1519-1542. https://doi.org/10.1039/c3cs60204d

Hattallia, S., Benaboura, A., Ham-Pichavant, F., Nourmamode, A., Castellan, A. (2002). Adding value to alfa grass (Stipa tenacissima L.), soda lignin as phenolic resins. Lignin characterization. Polymer Degradation and Stability, 75: 259-264.

Henriksson M., Henriksson G., Berglund L., Lindström T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8): 3434-41. https://doi.org/10.1016/j.eurpolymj.2007.05.038

Henrique, M. A., Silvério, H. A., Neto, W. P. F., Pasquini, D. (2013). Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manage., 121: 202-209. https://doi.org/10.1016/j.jenvman.2013.02.054

Hermiati E., Mangunwidjaja D., Sunarti T., Suparno O., Prasetya B. (2012). Microwave-assisted acid hydrolysis of starch polymer in cassava pulp in the presence of activated carbon. Procedia Chemistry, 4: 238-244. https://doi.org/10.1016/j.proche.2012.06.033

Hoareau W., Trindada W. G., Siegmund B., Castellan A., Frollini E. (2004). Sugar-cane bagasse and curaua lignins oxidatized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation and Stability, 86: 567-576. https://doi.org/10.1016/j.polymdegradstab.2004.07.005

Hou A., Wang X., Wu L. (2008). Effect of microwave irradiation on the physical properties and morphological structures of cotton cellulose. Carbohydrate Polymers, 74: 934-7. https://doi.org/10.1016/j.carbpol.2008.05.011

Islam, M. S., Kao, N., Bhattacharya, S. N., Gupta, R., Bhattacharjee, P. K. (2017a). Effect of low pressure, alkaline delignification process on the production of nanocrystalline cellulose from rice husk. J. Taiwan Inst. Chem. Eng., 80: 820-834. https://doi.org/10.1016/j.jtice.2017.06.042

Islam, M. U., Ullah, M. W., Khan, S., Shah, N., Park, J. K. (2017b). Strategies for cost effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol., 102: 1166-1173. https://doi.org/10.1016/j.ijbiomac.2017.04.110

Islam M.S., Chen L., Sisler J., Tam K. C. (2018). Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 6(6): 864-883. https://doi.org/10.1039/C7TB0 3016A

Istomin, A. V., Demina, T. S., Subcheva, E. N., Akopova, T. A., Zelenetskii, A. N. (2016). Nanocrystalline cellulose from flax stalks: preparation, structure, and use. Fibre Chem., 48(3): 199-201. https://doi.org/10.1007/s10692-016-9767-5

Janardhnan S., Sain M. M. (2007). Isolation of cellulose microfibrils–an enzymatic approach. BioResources, 1(2): 176-88. https://bioresources.cnr.ncsu.edu/resources/isolation-of-cellulose-microfibrils-an-enzymatic-approach/

Jiang, F., Kondo, T., Hsieh, Y.L. (2016). Rice straw cellulose nanofibrils via aqueous counter collision and differential centrifugation and their self-assembled structures. ACS Sustain. Chem. Eng., 4(3): 1697-1706. https://doi.org/10.1021/acssuschemeng.5b01653

Kalia S., Boufi S., Celli A., Kango S. (2014). Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 292(1): 5-31. https://link.springer.com/article/10.1007/s00396-013-3112-9

Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J., Chaabouni, S. E. (2016). Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crops Prod., 87: 287-296. https://doi.org/10.1016/j.indcrop.2016.04.060

Kappe C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43(46): 6250-6284. https://doi.org/10.1002/anie.200400655

Karimi, S., Tahir, P. M., Karimi, A., Dufresne, A., Abdulkhani, A. (2014). Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr. Polym., 101: 878-885. https://doi.org/10.1016/j.carbpol.2013.09.106

Kaur M., Santos K., y Praveen S. (2018). Chemically modified nanocellulose from rice husk: synthesis and characterisation. Advances in Research, 1-11. https://doi.org/10.9734/AIR/2018/38934

Kaushik, M., Moores, A., (2016). Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 18(3), 622-637. https://doi.org/10.1039/c5gc02500a

Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. (2017). Methods for extraction of nanocellulose fromvarious sources, Handb. Nanocellulose Cellul. Nanocomposites, 1-49. https://doi.org/10.1002/9783527689972.ch1

Keerati-U-Rai M., Corredig M. (2009). Effect of dynamic high-pressure homogenization on the aggregation state of soy protein. Journal of Agricultural and Food Chemistry, 57(9): 3556-62. https://doi.org/10.1021/jf803562q

Keijsers, E. R., Yilmaz, G., y Van Dam J. E. (2013). The cellulose resource matrix. Carbohydrate polymers, 93(1): 9-21. https://doi.org/10.1016/j.carbpol.2012.08.110

Khalil, H.P.S.A.; Davoudpour, Y.; Aprilia, N.; Mustapha, V.; Hossain, S.; Islam, N.; Dungani, R (2014). Nanocellulose-based polymer nanocomposite: isolation, characterization and applications. Nanocellulose Polym. Nanocomposites, 273-309. https://doi.org/10.1002/9781118872246.ch11

Khalil H. A., Davoudpour Y., Islam M. N., Mustapha A., Sudesh K., Dungani R., y Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate polymers, 99: 649-665. https://doi.org/10.1016/j.carbpol.2013.08.069

Kim H. J., Lee S., Kim J., Mitchell R. J., y Lee, J. H. (2013). Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresource technology, 144, 50-56. https://doi.org/10.1016/j.biortech.2013.06.090

Kloser E., Gray D. G. (2010). Surface grafting of cellulose nanocrystals with poly (ethylene oxide) in aqueous media. Langmuir, 26(16): 13450-13456. https://doi.org/10.1021/la101795s

Kos T., Anžlovar A., Kunaver M., Huskić M., Žagar E. (2014). Fast preparation of nanocrystalline cellulose by microwave-assisted hydrolysis. Cellulose, 21(4): 2579-2585. https://doi.org/10.1007/s10570-014-0315-2

Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48, 3713–3729.

Lavoine N., Desloges I., Dufresne A., y Bras J. (2012). Microfibrillated cellulose –Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 90(2): 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026

Lee, H. V., Hamid, S. B. A., y Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal, 2014. Article ID 631013. https://doi.org/10.1155/2014/631013

Leite, A. L., Zanon, C.D., Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr. Polym., 157: 962-970. https://doi.org/10.1016/j.carbpol.2016.10.048

Lemieux P. M., Lutes C. C., y Santoianni D. A. (2004). Emissions of organic air toxics from open burning: a comprehensive review. Progress in energy and combustion science, 30(1): 1-32. https://doi.org/10.1016/j.pecs.2003.08.001

Leonelli C., y Mason T. J. (2010). Microwave and ultrasonic processing: now a realistic option for industry. Chemical Engineering and Processing: Process Intensification, 49(9): 885-900. https://doi.org/10.1016/j.cep.2010.05.006

Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., Yao, J. (2009). Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr. Polym. 76(1): 94-99. https://doi.org/10.1016/j.carbpol.2008.09.034

Li Q., McGinnis S., Sydnor C., Wong A., y Renneckar S. (2013). Nanocellulose life cycle assessment. ACS Sustainable Chemistry & Engineering, 1(8): 919-928. https://doi.org/10.1021/sc4000225

Liu Q. (2017). Isolation and characterization of nanocelluloses from wheat straw and their application in agricultural water-saving materials. Tesis doctoral. Université de Liège, Liège, Belgique. http://hdl.handle.net/2268/216283

Lu H., Gui Y., Zheng L., y Liu X. (2013). Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 50(1): 121-128. https://doi.org/10.1016/j.foodres.2012.10.013

Lu, P., Hsieh, Y. L. (2012a). Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr. Polym., 87(4): 2546-2553. https://doi.org/10.1016/j.carbpol.2011.11.023

Lu, P., Hsieh, Y. L. (2012b). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym., 87(1): 564-573. https://doi.org/10.1016/j.carbpol.2011.08.022

Malucelli, L.C., Lacerda, L.G., Dziedzic, M., da Silva Carvalho Filho, M.A. (2017). Preparation, properties and future perspectives of nanocrystals from agroindustrial residues: a review of recent research. Rev. Environ. Sci. Bio/Technol., 16(1): 131-145. https://doi.org/10.1007/s11157-017-9423-4

Marchessault, R. H., Malhotra S. L., Jones A. Y. y Perovic A. (1991). Steam explosion: a refining process for lignocellulosics. En Focher B., Marzetti A., Crescenzi V. Gordon (eds.), Steam explosion techniques. Fundamentals and industrial applications. Amsterdam: Breach Science Publishers, 1-19.

Mariano, M., Cercená, R., Soldi, V. (2016). Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind. Crops Prod., 94: 454-462. https://doi.org/10.1016/j.indcrop.2016.09.011

Martelli-Tosi, M., Torricillas, M. da S., Martins, M. A., Assis, O. B. G. de, Tapia-Blácido, D. R. (2016). Using commercial enzymes to produce cellulose nanofibers from soybean straw. J. Nanomater., 1-10.

Maurat, D. E. C. (2014). Aprovechamiento de los residuos agrícolas provenientes del cultivo de banano para obtener nanocelulosa. J. Chem. Inf. Model, 77. http://dspace.ucuenca.edu.ec/bitstream/123456789/5292/1/tesis.pdf

Mejías, B. N., Orozco G. E., y Galáan H. N. (2016). Aprovechamiento de los residuos agroindustriales y su contribución al desarrollo sostenible de México. Revista de Ciencias Ambientales y Recursos Naturales, 2(6): 27-41. http://www.ecorfan.org/spain/researchjournals/Ciencias_Ambientales_y_Recursos_Naturales/vol2num6/Revista_de_Ciencias_Ambientales_y_Recursos_Naturales_V2_N6.pdf

Meléndez, A. G. R., Mestizo, F. A. C., Vega, J. C. B. y Betancourt, M. A. M. (2017). Aprovechamiento energético integral de la Eichhornia crassipes (Buchón de agua)-Integral energetic use of Echornia crassipes. Ingenium Revista de la facultad de ingeniería, 18(35): 134-152.

Mishra R. K., Sabu, A., Tiwari. S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J. Saudi Chem. Soc., https://doi.org/10.1016/j.jscs.2018.02.005

Mondal. S. (2017). Preparation, properties and applications of nanocellulosic materials, Carbohydr. Polym., 163: 301-316. https://doi.org/10.1016/j.carbpol.2016.12.050

Moon R. J., Martini A., Nairn J., Simonsen J., y Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7): 3941-3994. https://doi.org/10.1039/C0CS00108B

Morais, J. P. S., De Freitas Rosa, M., Nascimento, L. D., Do Nascimento, D. M., y Cassales, A. R. (2013). Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate polymers, 91(1): 229-235. https://doi.org/10.1016/j.carbpol.2012.08.010

Muñoz B. B. (2018). Síntesis y caracterización de nanocelulosas de orígenes diversos. Trabajo en opción al titulo de ingeniería química. Escuela Técnica Superior de Ingeniería Industrial de Barcelona. 115 pp. http://hdl.handle.net/2117/120299

Naik S. N., Goud V. V., Rout P. K., y Dalai A. K. (2010). Production of first and second generations biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14(2): 578-597. https://doi.org/10.1016/j.rser.2009.10.003

Nakagaito, A. N., y Yano, H. (2004). The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A, 78(4): 547-552. https://doi.org/10.1007/s00339-003-2453-5

Nascimento D. M., Nunes Y. L., Figueirêdo M. C., De Azeredo H. M., Aouada F. A., Feitosa J. P., y Dufresne A. (2018). Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry, 20(11): 2428-2448.https://doi.org/10.1039/C8GC00205C

Nechyporchuk O., Belgacem M. N., y Bras J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93: 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016

O’Sullivan A. (1997). Cellulose: the structure slowly unravels. Cellulose, 4: 173-207. https://doi.org/10.1023/A:1018431705579

Oghbaei M, Mirzaee O. (2010). Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 494: 175-89. https://doi.org/10.1016/j.jallcom.2010.01.068

Ovalle-Serrano S. A., Blanco-Tirado C. y Combariza M. Y. (2018). Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 25: 151-165. https://doi.org/10.1007/s10570-017-1599-9

Paakko M., Ankerfors M., Kosonen H., Nykänen A., Ahola S., Österberg M., J Ruokolainen, J Laine, P. T. Larsson, O. Ikkala, T. Lindström. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6): 1934-41. https://doi.org/10.1021/bm061215p

Penttilä P. A., Várnai A., Fernández M., Kontro I., Liljeström V., Lindner P., Siika-aho M., Viikari L. y Serimaa R. (2013). Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis. Cellulose, 20: 1031-1040. https://doi.org/10.1007/s10570-013-9899-1

Peñaranda G. L. V, Giraldo Abad P., Montenegro G. S. P., y Giraldo A. P. A. (2017). Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2): 2-10. https://hemeroteca.unad.edu.co/index.php/riaa/article/view/2040/2251

Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. (2018). Nanocellulose: extraction and application. Carbon Resour. Convers., 1: 32-43, https://doi.org/10.1016/j.crcon.2018.05.004

Prieto E. (2013). Nanocelulosa cristalina. Arquitectura Viva, I(8): 12-15. http://www.arquitecturaviva.com/Info/News/Details/4859

Puangsin, B., Soeta, H., Saito, T., Isogai, A. (2017). Characterization of cellulose nanofibrils prepared by direct TEMPO-mediated oxidation of hemp bast. Cellulose, 24(9): 3767-3775. https://doi.org/10.1007/s10570-017-1390-y

Pulido B. E., Morales C. B., Zamudio A. M., y Lugo del Angel F. (2016). Obtención y caracterización de nanocelulosa a partir de tule (Typha domingensis). Revista de Energía Química y Física, 3(6): 31-38. http://www.ecorfan.org/bolivia/researchjournals/Energia_Quimica_y_Fisica/vol3num6/Revista_Energia_Quimica_Fisica_V3_N6.pdf

Ramezani Kakroodi, A., Panthapulakkal, S., Sain, M., Asiri, A. (2015). Cellulose nanofibers from the skin of beavertail cactus, Opuntia basilaris, as reinforcements for polyvinyl alcohol. J. Appl. Polym. Sci. 132(36). https://doi.org/10.1002/app.42499

Revol, J.-F., Bradford, H. Giasson J., Marchessault, R.H., Gray, D.G. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14(3): 170-172, ISSN 0141-8130. https://doi.org/10.1016/S0141-8130(05)80008-X

Ramírez D. E. A., Bolio L. I. G., Ramírez C. R., Veleva, C. L., Valerio C. C. (2018). Obtención de celulosa (ASAM) y nanocelulosa (H2SO4) a partir de hojas de piña. Journal CIM, 6(1). Coloquio de Investigación Multidisciplinaria. ISSN 2007-8102. https://acf3c71a-81c6-4fcd-81e9-262d3bfcadf8.filesusr.com/ugd/d1e662_426705887e4f4cc2bca477718655beb6.pdf

Ramírez-Carmona M., y Muñoz-Blandón O. (2016). Agroindustrial waste cellulose using fermented broth of white rot fungi. Revista Mexicana de Ingeniería Química, 15(1): 23-31. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382016000100023&lng=es&tlng=en

Rahimi, K. S. M.; Brown, R. J.; Tsuzuki, T.; Rainey, T. J. (2016). A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci. Nanosci. Nanotechnol., 7. https://doi.org/10.1088/2043-6262/7/3/035004

Rånby B. G. (1951). Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discussions of the Faraday Society, 11: 158-64. https://doi.org/10.1039/DF9511100158

Rebouillat S., Pla F. (2013). State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. Journal of Biomaterials & Nanobiotechnology 4(2): 165-188. https://doi.org/10.4236/jbnb.2013.42022

Regan C. (2019). Comparative analysis of methods for producing nanocellulose from wheat straw and bran, with co-extraction of valuable products. Tesis presentada en requerimientos parciales para la obtención del grado. Facultad de Ingeniería de la Stellenbosch University. Stellenbosch University. https://scholar.sun.ac.za

Rehman M. S. U., Kim I., Chisti Y., Han J.-I. (2013). Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Education Science and Technology Part A: Energy Science and Research, 30(2):1 391-1410. https://www.researchgate.net/publication/236330168_Use_of_ultrasound_in_the_production_of_bioethanol_from_lignocellulosic_biomass

Rezanezhad, R., Nooroddin, N., Ghasem, A. (2013). Isolation of nanocellulose from rice waste via ultrasonication. “nanocellulose from straw”. Lignocellulose, 2(1): 282-291. http://lignocellulose.sbu.ac.ir/Issue%2004/Ligno74_Rezanezhad_2013_Nanocellulose%20from%20Rice%20Waste_282_291_MAH_FDV.pdf

Ribeiro, R. S. A, Pohlmann B. C., Calado V., Bojorge N., Pereira Jr. N. (2019). Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Eng Life Sci. 19: 279-291. https://doi.org/10.1002/elsc.201800158

Rivera M. J. P. (2013). Estudios sobre el comportamiento de la madera del huizache (Acacia farnesiana), en procesos de pulpeo, enfocados hacia la producción de α-celulosa para derivados.Tesis ara el grado de ingeniero químico, Departamento de Ingeniería Química. Universidad de Guadalajara. Guadalajara, Jalisco.

Rodríguez L. C. Y. (2016). Obtención de nanocelulosa a partir del Agave salmiana y su uso en la preparación de películas conductoras. Tesis de mestría, Facultad de Ingeniería Mecánica y Eléctrica. Universidad Autónoma de Nuevo León. 56pp. http://eprints.uanl.mx/id/eprint/18036

Roman M., Winter W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 5(5): 1671-1677. https://doi.org/10.1021/bm034519+

Rosa M., Medeiros E., Malmonge J., Gregorski K. S., Wood D., Mattoso L. H. C., Glenn G., Orts W. J., Imam. S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1): 83-92. https://doi.org/10.1016/j.carbpol.2010.01.059

Saito T., Nishiyama Y., Putaux J.-L., Vignon M., Isogai A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7(6): 1687-91. https://doi.org/10.1021/bm060154s

Sánchez O. A. (2015). Síntesis de nanopartículas derivadas de biopolímeros extraídos de biomasa por métodos térmicos. Tesis presentada en opción al grado de maestría en ciencias. Universidad autónoma de Nuevo León. Facultad de Ciencias Químicas. 86 pp. http://eprints.uanl.mx/id/eprint/9397

Santos L. J. J., y Silva A. C. A. (2019). Obtención de nanocelulosa a partir de la cascarilla de arroz mediante hidrólisis ácida. Tesis doctoral, Universidad de Guayaquil, Facultad de Ingeniería Química. http://repositorio.ug.edu.ec/bitstream/redug/40057/1/401-1370%20-20obtenc%20nanocelulosa%20a%20partir%20cascarilla%20arroz%20mediante%20hidr%C3%B3lisis%20%C3%A1cida.pdf

Shamskar K. R., Heidari, H., y Rashidi A. (2016). Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Industrial Crops and Products, 93: 203-211. https://doi.org/10.1016/j.indcrop.2016.01.044

Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T. (2019). Commercial application of cellulose nano-composites–a review. Biotechnol. Reports, 21. e00316. https://doi.org/10.1016/j.btre.2019.e00316

Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym., 88(2): 772-779. https://doi.org/10.1016/j.carbpol.2012.01.062

Singh R. P y Park, R., Kraft. (1980). Pulp bleaching and recovery process. EU Patente US4196043A. https://patents.google.com/patent/US4196043A/en

Singh V., Kumar P., Sanghi R. (2012). Use of microwave irradiation in the grafting modification of the polysaccharides. A review. Progress in Polymer Science, 37: 340-64. https://doi.org/10.1016/j.progpolymsci.2011.07.005

Siqueira G., Bras J., Dufresne A. (2010). Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers, 2(4): 728-765. https://doi.org/10.3390/polym2040728

Siró I., Plackett D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17: 459-494. https://doi.org/10.1007/s10570-010-9405-y

Song, Q., Winter, W. T., Bujanovic, B. M., Amidon, T. E. (2014). Nanofibrillated cellulose (NFC): a high-value co-product that improves the economics of cellulosic ethanol production. Energies, 7: 607-618.

Soni B., Mahmoud E. B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134: 581-589. region. https://doi.org/10.1016/j.carbpol.2015.08.0310144

Sonia A., Priya Dasan K. (2013). Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers, 92(1): 668-674. https://doi.org/10.1016/j.carbpol.2012.09.015

Sun J. X., Sun X. F., Zhao H., Sun R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84: 331-339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008

Sun, R. C., Sun, X. F., Fowler, P., Tomkinson, J. (2002). Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. European Plymer Journal, 38(7): 1399-1407.

Sun, R. (2010). Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier, 15-17. https://www.sciencedirect.com/book/9780444532343/cereal-straw-as-a-resource-for-sustainable-biomaterials-and-biofuels

Syafri, E., Kasim, A., Abral, H., Asben, A. (2018). Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J. Nat. Fib.,1-11. https://doi.org/10.1080/15440478.2018.1455073

Tabil, L., Adepa P. y Kashaninejad M. (2011). Biomass feedstock pre-processing–Part 1: pre-treatment. Biofuel’s Engineering Process Technology. https://doi.org/10.5772/17086

Teixeira, R. S. S., Silva, A. S. Da, Jang, J.-H., Kim, H.-W., Ishikawa, K., Endo, T., Bon, E. P. S. (2015). Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydrate Polymers, 128: 75-8.

Tshikovhi, A., Shivani B. M., Ajay K. M. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152: 616-632. ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2020.02.221

Thaherzadeh, M. y Karimi, K. (2008). Pretratament of lignocellulosic wastes to improve etanol and biogas production: A review. International Journal Molecular Science, 9: 1621-1651.

Thomas, M. G., Abraham, E., Jyotishkumar, P., Maria, H. J., Pothen, L. A., Thomas, S. (2015). Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int. J. Biol. Macromol., 81: 768-777. https://doi.org/10.1016/j.ijbiomac.2015.08.053

Tsukamoto, J., Durán, N., Tasic, L. (2013). Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J. Braz. Chem. Soc., 24: 1537-1543.

Urena B. E. E. (2011). Cellulose nanocrystals properties and applications in renewable nanocomposites. Tesis. Carolina del Sur: Clemson University, Tiger Prints. https://tigerprints. clemson.edu/all_dissertations/704/

Valadez-Gonzalez A., Cervantes J., Olayo R., Herrera-Franco P. J. (1999). Effect of fibre surface treatment on the fibre-matrix bond strength of natural fiber reinforced composites. Elsevier, 30(3): 309-320. https://doi.org/10.1016/S1359-8368(98)00054-7

Valencia P. J. (2015). Revolución de los bionanomateriales. Divulgación, 54. https://doi.org/10.5772/17086

Vargas C. Y. A., y Peréz P. L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 1(1): 59-72. https://doi.org/10.18359/rfcb.3108

Vidales C. H. (2019). Métodos de extracción de nanocelulosa a partir de residuos de Agave spp. Tesis en opción al título de técnico superior universitario en química área biotecnología. Universidad Tecnológica del Valle de Toluca. Unidad Académica de Capulhuac. 48 pp. http://creativecommons.org/licenses/by/4.0

Vignon M., Garcia-Jaldon C., Dupeyre D. (1995). Steam explosion of woody hemp chenevotte. International Journal of Biological Macromolecules, 17(6): 395-404. https://doi.org/10.1016/0141-8130(96)81852-6

Wan Z., Xiong Z., Ren H., Huang Y., Liu H., Xiong H., Wu Y., Han J. (2011) Graft copolymerization of methyl methacrylate onto bamboo cellulose under microwave irradiation. Carbohydrate Polymers. 83: 264-269. https://doi.org/10.1016/j.carbpol.2010.07.048

Wang B., Sain M. (2007). The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources, 2(3): 371-88. https://bioresources.cnr.ncsu.edu/resources/the-effect-of-chemically-coated-nanofiber-reinforcement-on-biopolymer-based-nanocomposites/

Wang Z., Sun X.-x, Lian Z.-x, Wang X.-x, Zhou J., Ma Z. (2012). The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/microcrystalline wheat-bran cellulose film. Journal of Food Engineering. https://doi.org/10.1016/j.lwt.2014.01.036

Wang Z., Yao Z. J., Zhou J., y Zhang, Y. (2017). Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydrate Polymers, 157: 945-952. https://doi.org/10.1016/j.carbpol.2016.10.044

Wu Y., Fu Z., Yin D., Xu Q., Liu F., Lu C., Mao L. (2010). Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry, 12: 696-700. https://doi.org/10.1039/B917807D

Xu, C., Zhu, S., Xing, C., Li, D., Zhu, N., Zhou, H. (2015). Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process. Plos One, 10(4): e0122123. https://doi.org/10.1371/journal.pone.0122123

Xu Q., Y. Gao, M. Qin, K. Wu, Y. Fu y J. Zhao, (2013). Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp. International Journal of Biological Macromolecules, 60: 241-247. https://doi.org/10.1016/j.ijbiomac.2013.05.038

Yin H., Yamamoto T., Wada Y., Yanagida S. (2004). Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics, 83: 66-70. http://dx.doi.org/10.1016/j.matchemphys.2003.09.006

Zakikhani P., Zahari R., Sultan M. T. H., Majid D. L. (2014). Extraction and preparation of bamboo fibre-reinforced composites. Materials and Design, 63: 820-828. https://doi.org/10.1016/j.matdes.2014.06.058

Zanella S.R. (2012). Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología 5(1). https://doi.org/10.22201/ceiich.24485691e.2012.1.45167

Publicado
2021-08-25
Cómo citar
Pérez, R., Álvarez Castillo, A., Olarte Paredes, A., & Salgado Delgado, A. (2021). Obtención de nanocelulosa a partir de residuos postcosecha. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(30), 1e-47e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69662