Alúmina anódica porosa (AAP): arreglo de nanocrisoles de α-alúmina de tamaño modulable

  • Ricardo González Campuzano Universidad Nacional Autónoma de México. Instituto de Investigaciones en Materiales https://orcid.org/0000-0003-2783-3961
  • María Esther Mata Zamora Universidad Nacional Autónoma de México. Instituto de Ciencias Aplicadas y Tecnología http://orcid.org/0000-0003-0369-9219
Palabras clave: alúmina anódica porosa (AAP), membranas de a-alúmina, termotratamiento de AAP

Resumen

Debido al creciente interés en la síntesis de diferentes estructuras a escala nanométrica, las alúminas anódicas porosas son una alternativa emergente a los métodos más sofisticados y costosos que se utilizan actualmente.  En este trabajo se presenta una breve revisión acerca de algunos resultados experimentales recientes para sintetizar alúminas anódicas porosas con diámetros de poro extra grandes (>200 nm), usando mezclas de ácidos como electrolitos y voltajes altos de anodizado. Adicionalmente, se presentan estudios relacionados con la estabilidad térmica de las alúminas anódicas porosas, formadas en condiciones estándar, usando los electrolitos más comunes (ácidos sulfúrico, oxálico y fosfórico). Dichos estudios han mostrado que la alúmina anódica, de inicio amorfa, debe transitar por un proceso de eliminación de aniones previo a la transformación de fases policristalinas hasta alcanzar la fase más estable, α-alúmina. Finalmente, se mencionan algunas de las más destacadas aplicaciones que podrían tener las nanoestructuras obtenidas a partir de alúminas anódicas porosas obtenidas por métodos no convencionales y las tratadas térmicamente.

Citas

Abdel-Karim, R. y El-Raghy, S. M. (2016). Fabrication of nanoporous alumina. En Nanofabrication using nanomaterials. One Central Press (OCP).

Akiya, S., Kikuchi, T., Natsui, S. y Suzuki, R. O. (2015). Optimum exploration for the self-ordering of anodic porous alumina formed via selenic acid anodizing. Journal of The Electrochemical Society, 162(10): E244-E250. https://doi.org/10.1149/2.0391510jes

Aman, J. N., Wied, J. K., Alhusaini, Q., Müller, S., Diehl, K., Staedler, T., Schönherr, H. Jiang, X., Schmedt, auf der Günne J. (2019). Thermal hardening and defects in anodic aluminum oxide obtained in oxalic acid: implications for the template synthesis of low-dimensional nanostructures. ACS Applied Nano Materials, 2(4): 1986-1994. https://doi.org/10.1021/acsanm.9b00018

Asoh, H., Masuda, T. y Ono, S. (2015). Nanoporous a-alumina membranes with pore diameters tunable over wide range of 30-350 nm. ECS Transactions, 69(2): 225. https://doi.org/10.1149/06902.0225ecst

Bocchetta, P., Sunseri, C., Chiavarotti, G. y Di Quarto, F. (2003). Microporous alumina membranes electrochemically grown. ElectrochimicaActa, 48(20-22), 3175-3183. https://doi.org/10.1016/S0013-4686(03)00348-7

Brown, I. W. M., Bowden, M. E., Kemmitt, T. y MacKenzie, K. J. D. (2006). Structural and thermal characterisation of nanostructured alumina templates. Current Applied Physics 6(3): 557-561. https://doi.org/10.1016/j.cap.2005.11.060

Celik, M., Altuntas, S. y Buyukserin, F. (2018). Fabrication of nanocrater-decorated anodic aluminum oxide membranes as substrates for reproducibly enhanced SERS signals. Sensors and Actuators B: Chemical, 255: 2871-2877. https://doi.org/10.1016/j.snb.2017.09.105

Chang, Y., Ling, Z., Liu, Y., Hu, X. y Li, Y. (2012). A simple method for fabrication of highly ordered porous a-alumina ceramic membranes. Journal of Materials Chemistry, 22(15): 7445-7448. https://doi.org/10.1039/C2JM15279G

Chen, X., Yu, D., Cao, L., Zhu, X., Song, Y., Huang, H., Lu, L. y Chen, X. (2014). Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages. Materials Research Bulletin, 57: 116-120. https://doi.org/10.1016/j.materresbull.2014.05.037

Cho, S. Y., Kim, J. W. y Bu, S. D. (2015). Effects of impurities on phase transition changes according to heat treatment of porous anodic alumina fabricated in oxalic acid and phosphoric acid electrolytes. Journal of the Korean Physical Society, 66(9): 1394-1400. https://doi.org/10.3938/jkps.66.1394

Choudhari, K. S., Sudheendra, P. yUdayashankar, N. K. (2012). Fabrication and high- temperature structural characterization study of porous anodic alumina membranes. Journal of Porous Materials, 19(6): 1053-1062. https://doi.org/10.1007/s10934-012-9568-z

Domínguez-Adame, F., Martín-González, M., Sánchez, D. y Cantarero, A. (2019). Nanowires: A route to efficient thermoelectric devices. Physica E: Low-dimensional Systems and Nanostructures. 113: 213-225. http://dx.doi.org/10.1016/j.physe.2019.03.021

Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. y Wolff, P. A. (1998). Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668): 667-669. https://doi.org/10.1038/35570

Farnan, I., Dupree, R., Jeong, Y., Thompson, G. E., Wood, G. C. y Forty, A. J. (1989). Structural chemistry of anodic alumina. Thin Solid Films, 173(2). 209-215. https://doi.org/10.1016/0040-6090(89)90136-3

Gitzen, W. H. (1970). Alumina as a ceramic material. Alcoa Research Laboratories. The American Ceramic Society Inc. EUA.

González-Campuzano, R., Martínez-Lara, D. E. y Mendoza, D. (2020). Lead plasmonics on texturized substrates: Pbmetafilms. Applied Physics Letters, 117(3): 031603. https://doi.org/10.1063/5.0016131

González-Campuzano, R., Mata-Zamora, M. E., López-Romero, S. y Mendoza, D. (2018). Excitation of plasmonic resonances within UV-Vis wave length range using low-purity aluminum nanoconcave arrays. Applied Physics Letters, 113(22): 221604. https://doi.org/10.1063/1.5059556

González-Campuzano, R., Saniger, J. M. y Mendoza, D. (2017). Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV–IR spectral range. Nanotechnology, 28(46): 465704. https://doi.org/10.1088/1361-6528/aa8ce4

González-Campuzano, R. y Mendoza, D. (2019). Excitation of plasmons in self-ordered arrays of aluminum and silver nanoconcaves within UV–IR spectral range. Journal of Physics: Conference Series, 1221(1): 012001. https://doi.org/10.1088/1742-6596/1221/1/012001

Hashimoto, H., Kojima, S., Sasaki, T. y Asoh, H. (2018a). a-Alumina membrane having a hierarchical structure of straight macropores and mesopores inside the pore wall. Journal of the European Ceramic Society, 38(4), 1836-1840. https://doi.org/10.1016/j.jeurceramsoc.2017.11.032

Hashimoto, H., Shigehara, Y., Ono, S. y Asoh, H. (2018b). Heat-induced structural transformations of anodic porous alumina formed in phosphoric acid. Microporous and Mesoporous Materials, 265, 77-83. https://doi.org/10.1016/j.micromeso.2018.01.008

Hong, C., Tang, T. T., Hung, C. Y., Pan, R. P. y Fang, W. (2010). Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications. Nanotechnology, 21(28): 285201. https://doi.org/10.1088/0957-4484/21/28/285201. https://doi.org/10.1016/j.physe.2019.03.021

Huang, C. Y., Y Tsai, M. S. (2018). Fabrication of 3D nano-hemispherical cavity array plasmonic substrate for SERS applications. International Journal of Optomechatronics, 12(1): 40-52. https://doi.org/10.1080/15599612.2018.1508528

Jessensky, O., Müller, F. y Gösele, U. (1998). Self-organized formation of hexagonal pore arrays in anodic alumina. Applied physics letters, 72(10): 1173-1175. https://doi.org/10.1063/1.121004

Kikuchi, T., Nishinaga, O., Natsui, S. y Suzuki, R. O. (2014a). Fabrication of anodic nanoporous alumina via acetylenedicarboxylic acid anodizing. ECS Electrochemistry Letters, 3(7): C25-C28. https://doi.org/10.1149/2.0071407eel

Kikuchi, T., Nishinaga, O., Natsui, S. y Suzuki, R. O. (2014b). Self-ordering behavior of anodic porous alumina via selenic acid anodizing. Electrochimica Acta, 137: 728-735. https://doi.org/10.1016/j.electacta.2014.06.078

Kikuchi, T., Nishinaga, O., Natsui, S. y Suzuki, R. O. (2015). Fabrication of self-ordered porous alumina via etidronic acid anodizing and structural color generation from submicrometer-scale dimple array. Electrochimica Acta, 156: 235-243. https://doi.org/10.1016/j.electacta.2014.12.171

Kikuchi, T., Takenaga, A., Natsui, S. y Suzuki, R. O. (2017). Advanced hard anodic alumina coatings via etidronic acid anodizing. Surface and Coatings Technology, 326: 72-78. https://doi.org/10.1016/j.surfcoat.2017.07.043

Kirchner, A., MacKenzie, K. J. D., Brown, I. W. M., Kemmitt, T. y Bowden, M. E. (2007). Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process. Journal of Membrane Science, 287(2): 264-270. https://doi.org/10.1016/j.memsci.2006.10.045

Knörnschild, G., Poznyak, A. A., Karoza, A. G. y Mozalev, A. (2015). Effect of the anodization conditions on the growth and volume expansion of porous alumina films in malonic acid electrolyte. Surface and Coatings Technology, 275: 17-25. https://doi.org/10.1016/j.surfcoat.2015.04.030

Le Coz, F., Arurault, L. y Datas, L. (2010). Chemical analysis of a single basic cell of porous anodic aluminium oxide templates. Materials Characterization, 61(3): 283-288. https://doi.org/10.1016/j.matchar.2009.12.008

Lee, C. W., Kang, H. S., Chang, Y. H. y Hahm, Y. M. (2000). Thermo treatment and chemical resistance of porous alumina membrane prepared by anodic oxidation. Korean Journal of Chemical Engineering, 17(3): 266-272. https://doi.org/10.1007/BF02699038

Lee, W. y Park, S. J. (2014). Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chemical Reviews, 114(15): 7487-7556. https://doi.org/10.1021/cr500002z

Leitao, D. C., Ventura, J., Teixeira, J. M., Sousa, C. T., Pinto, S., Sousa, J. B. Michalik, J. M., De Teresa, J. M., Vazquez, M. y Araujo, J. P. (2013). Correlations among magnetic, electrical and magneto-transport properties of Ni Fe nano hole arrays. Journal of Physics: Condensed Matter, 25(6): 066007. https://doi.org/10.1088/0953-8984/25/6/066007

Leung, S. F., Yu, M., Lin, Q., Kwon, K., Ching, K. L., Gu, L., ... y Fan, Z. (2012). Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano letters, 12(7): 3682-3689. https://doi.org/10.1021/nl3014567

Levin, I. y Brandon, D. (1998). Metastable alumina polymorphs: crystal structures and transition sequences. Journal of the American Ceramic Society, 81(8): 1995-2012. https://doi.org/10.1111/j.1151-2916.1998.tb02581.x

Li, A. P., Müller, F., Birner, A., Nielsch, K. y Gösele, U. (1998). Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. Journal of applied physics, 84(11): 6023-6026. https://doi.org/10.1063/1.368911

Li, H., Long, Y., Wang, X., Song, G., Ma, L., Xu, H. y Li, X. (2020). Controllable fabrication and magnetic properties of Nd/Co core/shell nanowires. Applied Nanoscience, 1-8. https://doi.org/10.1007/s13204-020-01588-4

Li, Y., Zheng, M., Ma, L. y Shen, W. (2006). Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 17(20): 5101. https://doi.org/10.1088/0957-4484/17/20/010

Losic D., Santos A., (2015). Nanoporous alumina. fabrication, structure, properties and applications. Springer Series in Materials Science, Vol. 219, Springer. 10.1007/978-3-319-20334-8

Ma, Y., Wen, Y., Li, J., Li, Y., Zhang, Z., Feng, C. y Sun, R. (2016). Fabrication of self- ordered alumina films with large interpore distance by janus anodization in citric acid. Scientific Reports, 6: 39165. https://doi.org/10.1038/srep39165

Mardilovich, P. P., Govyadinov, A. N., Mukhurov, N. I., Rzhevskii, A. M. y Paterson, R. (1995). New and modified anodic alumina membranes. Part I. Thermotreatment of anodic alumina membranes. Journal of Membrane Science, 98(1-2): 131-142. https://doi.org/10.1016/0376-7388(94)00184-Z

Mardilovich, P. P., Govyadinoy, A. N., Mazurenko, N. I. y Paterson, R. (1995). New and modified anodic alumina membranes. Part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes. Journal of membrane science, 98(1-2): 143-155. https://doi.org/10.1016/0376-7388(94)00185-2

Masuda H. (2005). Highly ordered nanohole arrays in anodic porous alumina. En Ordered porous nanostructures and applications. Springer International Publishing. https://doi.org/10.1007/0-387-25193-6_3

Masuda, H., Hasegwa, F. y Ono, S. (1997). Self‐ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. Journal of the Electrochemical Society, 144(5): L127-L130. https://doi.org/10.1149/1.1837634

Masuda, H., Yada, K. y Osaka, A. (1998). Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Japanese Journal of Applied Physics, 37(11A): L1340. https://doi.org/10.1143/JJAP.37.L1340

Masuda, T., Asoh, H., Haraguchi, S. y Ono, S. (2015). Fabrication and characterization of single phase a-alumina membranes with tunable pore diameters. Materials, 8(3): 1350- 1368. https://doi.org/10.3390/ma8031350

Mata-Zamora, M. E. y Saniger, J. M. (2005). Thermal evolution of porous anodic aluminas: a comparative study. Revista Mexicana de Física, 51(5): 502-509.

McQuaig, M. K., Toro, A., Van Geertruyden, W. y Misiolek, W. Z. (2011). The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide. Journal of Materials Science, 46(1): 243-253. https://doi.org/10.1007/s10853-010-4966-6

Nakanishi, T. y Ando, T. (1996). Quantum interference effects in antidot lattices in magnetic fields. Physical Review B, 54(11): 8021. https://doi.org/10.1103/PhysRevB.54.8021

Nazarkina, Y., Gavrilov, S., Terryn, H., Petrova, M. y Ustarroz, J. (2015). Investigation of the ordering of porous anodic alumina formed by anodization of aluminum in selenic acid. Journal of The Electrochemical Society, 162(9): E166-E172. https://doi.org/10.1149/2.0571509jes

Nazarkina, Y., Kamnev, K., Dronov, A., Dudin, A., Pavlov, A. y Gavrilov, S. (2017).

Features of porous anodic alumina growth in galvanostatic regime in selenic acid based electrolyte. Electrochimica Acta, 231: 327-335. https://doi.org/10.1016/j.electacta.2017.02.049

Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B. y Gösele, U. (2002). Self-ordering regimes of porous alumina: the 10porosity rule. Nano Letters, 2(7): 677-680. https://doi.org/10.1021/nl025537k

Nishinaga, O., Kikuchi, T., Natsui, S. y Suzuki, R. O. (2013). Rapid fabrication of self- ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing. Scientific Reports, 3: 2748. https://doi.org/10.1038/srep02748

Norek, M., Dopierała, M. y Stępniowski, W. J. (2015). Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. Journal of Electroanalytical Chemistry, 750: 79-88. https://doi.org/10.1016/j.jelechem.2015.05.024

Ono, S., Nakamura, M., Masuda, T. y Asoh, H. (2014). Fabrication of nanoporous crystalline alumina membrane by anodization of aluminum. Materials Science Forum, 783: 1470-1475. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.783-786.1470

Ozao, R., Ochiai, M., Ichimura, N., Takahashi, H. e Inada, T. (2000). DSC study of alumina materials–applicability of transient DSC (Tr-DSC) to anodic alumina (AA) and thermoanalytical study of AA. Thermochimica Acta, 352: 91-97. https://doi.org/10.1016/S0040-6031(99)00443-8

Ozao, R., Ochiai, M., Yoshida, H., Ichimura, Y. e Inada, T. (2001a). Preparation of γ- alumina membranes from sulphuric electrolyte anodic alumina and its transition to α-alumina. Journal of Thermal Analysis and Calorimetry, 64(3): 923-932. https://doi.org/10.1023/A:1011518929708

Ozao, R., Yoshida, H. e Inada, T. (2002). Morphological and structural change of nano-pored alumina membrane above 1200 K. Journal of Thermal Analysis and Calorimetry, 69(3): 925-931. https://doi.org/10.1023/a:1020624526552

Ozao, R., Yoshida, H., Ichimura, Y., Inada, T. y Ochiai, M. (2001b). Crystallization of anodic alumina membranes studied by simultaneous TG-DTA/FTIR. Journal of Thermal Analysis and Calorimetry, 64(3): 915-922.https://doi.org/10.1023/a: 1011566811961

Ozao, R., Yoshida, H., Inada, T. y Ochiai, M. (2003). Sulfur concentration in nanoporous alumina membrane. Journal of Thermal Analysis and Calorimetry, 72(1): 113-118. https://doi.org/10.1023/a:1023959401129

Quan, L. N., Kang, J., Ning, C. Z. y Yang, P. (2019). Nanowires for photonics. Chemical Reviews, 119(15): 9153-9169. https://doi.org/10.1021/acs.chemrev.9b00240

Riva, J. S., Juárez, A. V., Urreta, S. E. y Yudi, L. M. (2019). Catalytic properties of FePd ferromagnetic nanowires at liquid/liquid interfaces. Electrochimica Acta, 298: 379-388. https://doi.org/10.1016/j.electacta.2018.12.069

Roslyakov, I. V., Kolesnik, I. V., Levin, E. E., Katorova, N. S., Pestrikov, P. P., Kardash,

T. Y., yNapolskii, K. S. (2020). Annealing induced structural and phase transitions in anodic aluminum oxide prepared in oxalic acid electrolyte. Surface and Coatings Technology, 381, 125159. https://doi.org/10.1016/j.surfcoat.2019.125159

Roslyakov, I. V., Shirin, N. A., Berekchiian, M. V., Shatalova, T. B., Garshev, A. V. y Napolskii, K. S. (2020). Coarse-grain alpha-alumina films with highly ordered porous structure. Microporous and Mesoporous Materials, 294: 109840. https://doi.org/10.1016/j.micromeso.2019.109840

Ruan, Z. y Qiu, M. (2006). Enhanced transmission through periodic arrays of sub-wave length holes: the role of localized waveguide resonances. Physical Review Letters, 96(23): 233901. https://doi.org/10.1103/PhysRevLett.96.233901

Runge, J. M. (2018). A brief history of anodizing aluminum. in: the metallurgy of anodizing aluminum. Connecting science to practice. USA: Springer International Publishing. https://doi.org/10.1007/978-3-319-72177-4_2

Santos, A., Alba, M., Rahman, M. M., Formentín, P., Ferré-Borrull, J., Pallarès, J. y Marsal, L. F. (2012). Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids. Nanoscale Research Letters, 7(1): 228. https://doi.org/10.1186/1556-276X-7-228

Schmidt, T. M., Bochenkov, V. E., Espinoza, J. D. A., Smits, E. C., Muzafarov, A. M., Kononevich, Y. N. y Sutherland, D. S. (2014). Plasmonic fluorescence enhancement of DBMBF2 monomers and DBMBF2–toluene exciplexes using al-hole arrays. The Journal of Physical Chemistry C, 118(4): 2138-2145. https://doi.org/10.1021/jp4110823

Schwind, M., Kasemo, B. y Zoric, I. (2013). Localized and propagating plasmons in imetal films with nanoholes. NanoLetters, 13(4): 1743-1750. https://doi.org/10.1021/nl400328x

Song, J., Oh, H., Kong, H. y Jang, J. (2011). Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal. Journal of Hazardous Materials, 187(1- 3): 311-317. https://doi.org/10.1016/j.jhazmat.2011.01.026

Sousa, C. T., Leitao, D. C., Proenca, M. P., Ventura, J., Pereira, A. M. y Araujo, J. P. (2014). Nanoporous alumina as templates for multifunctional applications. Applied Physics Reviews, 1(3): 031102. https://doi.org/10.1063/1.4893546

Stair, P. C., Marshall, C., Xiong, G., Feng, H., Pellin, M. J., Elam, J. W. y Wang, H. H. (2006). Novel, uniform nanostructured catalytic membranes. Topics in catalysis, 39(3-4), 181-186. https://doi.org/10.1007/s11244-006-0055-0

Sulka, G. D. (2008). Highly ordered anodic porous alumina formation by self-organized anodizing. Nanostructured Materials in Electrochemistry, 1: 1-116. https://doi.org/10.1002/9783527621507.ch1

Sun, B., Li, J., Jin, X., Zhou, C., Hao, Q. y Gao, X. (2013). Self-ordered hard anodization in malonic acid and its application in tailoring alumina taper-nanopores with continuously tunable periods in the range of 290-490 nm. Electrochimica Acta, 112: 327- 332. https://doi.org/10.1016/j.electacta.2013.08.147

Thompson, G. E. y Wood, G. C. (1981). Porous anodic film formation on aluminium. Nature 290:230-232. https://doi.org/10.1038/290230a0

Uryu, S. y Ando, T. (1998). Numerical study of localization in antidotlattices. Physical Review B, 58(16): 10583. https://doi.org/10.1103/PhysRevB.58.10583

Vavassori, P., Gubbiotti, G., Zangari, G., Yu, C. T., Yin, H., Jiang, H. y Mankey, G. J. (2002). Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film. Journal of Applied Physics, 91(10): 7992-7994. https://doi.org/10.1063/1.1453321

Wang, C. C., Adeyeye, A. O. y Singh, N. (2006). Magnetic antidot nanostructures: effect of lattice geometry. Nanotechnology, 17(6): 1629. https://doi.org/10.1088/0957-4484/17/6/015

Wang, J., Huang, L., Zhai, L., Yuan, L., Zhao, L., Zhang, W., Dongzhi, S., Hao, A., Feng, X. y Zhu, J. (2012). Hot spots engineering in hierarchical silver nanocap array for surface-enhanced Raman scattering. Applied Surface Science, 261: 605-609. https://doi.org/10.1016/j.apsusc.2012.08.063

Wang, Q., Long, Y. y Sun, B. (2013). Fabrication of highly ordered porous anodic alumina membrane with ultra-large pore intervals in ethylene glycol-modified citric acid solution. Journal of Porous Materials, 20(4): 785-788. https://doi.org/10.1007/s10934-012-9653-3

Wefers, K. yMisra, C. (1987). Oxides and hydroxides of aluminum, 19: 1-92. Pittsburgh, PA: Alcoa Laboratories.

Wehrspohn, R. B. (2005). Ordered porous nanostructures and applications. EUA: Springer International Publishing. https://doi.org/10.1007/b106900

Wunderlich, B. (1990). Thermal analysis. EUA: Academic Press, INC.

Xu, W. L., Zheng, M. J., Wu, S. y Shen, W. Z. (2004). Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes. Applied Physics Letters, 85(19): 4364-4366. https://doi.org/10.1063/1.1815072

Xu, Y. F., Liu, H., Li, X. J., Kang, W. M., Cheng, B. W. y Li, X. J. (2015). A novel method for fabricating self-ordered porous anodic alumina with wide interpore distance using phosphoric/oxalic acid mixed electrolyte. Materials Letters, 151: 79-81. https://doi.org/10.1016/j.matlet.2015.03.049

Yang, S. G., Li, T., Huang, L. S., Tang, T., Zhang, J. R., Gu, B. X. y Lu, Y. N. (2003). Stability of anodic aluminum oxide membranes with nanopores. Physics Letters A, 318(4-5): 440-444. https://doi.org/10.1016/j.physleta.2003.09.051

Yao, J., Liu, Z., Liu, Y., Wang, Y., Sun, C., Bartal, G., Stacy, G. M. y Zhang, X. (2008).Optical negative refraction in bulk metamaterials of nanowires. Science, 321(5891): 930- 930. https://doi.org/10.1126/science.1157566

Zaraska, L., Stępniowski, W. J., Jaskuła, M. y Sulka, G. D. (2014). Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures. Applied Surface Science, 305: 650-657. https://doi.org/10.1016/j.apsusc.2014.03.154

Zaraska, L., Wierzbicka, E., Kurowska-Tabor, E. y Sulka, G. D. (2015). Nanoporous alumina: fabrication, structure, properties, applications. Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-20334-8

Zhang, R., Jiang, K. y Ding, G. (2010). Surface morphology control on porous anodic alumina in phosphoric acid. Thin Solid Films, 518(14): 3797-3800. https://doi.org/10.1016/j.tsf.2010.01.004

Publicado
2021-09-17
Cómo citar
González Campuzano, R., & Mata Zamora, M. (2021). Alúmina anódica porosa (AAP): arreglo de nanocrisoles de α-alúmina de tamaño modulable. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 15(28), 1e-28e. https://doi.org/10.22201/ceiich.24485691e.2022.28.69672