Utilización de nanopartículas de plata en la micropropagación de plantas

Palabras clave: nanotecnología, nanopartículas de plata, biotecnología vegetal, cultivo in vitro, hormesis

Resumen

La micropropagación o propagación in vitro es la propagación asexual de plantas utilizando técnicas de Cultivo de Tejidos Vegetales (CTV). A pesar de las ventajas de estas técnicas, la contaminación de explantes, la asepsia del medio de cultivo y la acumulación de etileno en algunas especies, han sido un problema que afecta la micropropagación. La reciente aplicación de las nanopartículas de plata (NPsAg) en la micropropagación se ha convertido en una alternativa eficiente para la solución a estos inconvenientes. Además, en estudios de laboratorio se ha demostrado que las NPsAg, a bajas concentraciones, tiene un efecto dosis-respuesta sobre el desarrollo vegetal, conocido como hormésis. En este artículo revisamos los efectos de las NPsAg sobre la reducción de la contaminación, inhibir los efectos de etileno y promover el desarrollo durante la micropropagación. Además, son una alternativa a otras aplicaciones en el CTV y en la agricultura moderna.

Citas

Acharya, A. y Pal, P. K. (2020). Agriculture nanotechnology: translating research outcome to field applications by influencing environmental sustainability. Nanoimpact, 19: 100232.

Agathokleous, E., Feng, Z. y Peñuelas, J. (2020). Chlorophyll hormesis: are chlorophylls major components of stress biology in higher plants? Sci Total Environ, 1: 38637. https://doi.org/10.1016/j.scitotenv.2020.138637.

Agathokleous, E., Kitao, M. y Calabrese, E. J. (2019). Hormesis: a compelling platform for sophisticated plant science. Trends Plant Sci, 4: 318-327. https://doi.org/10.1016/j.tplants.2019.01.004.

Ahmadian, M., Babaei, A. R., Shokri, S., Hessami, S. y Arab, M. M. (2015). Controlling the in vitro contamination of carnation (Dianthus caryophyllus L.) single nodes explant by Nano-silver. International Journal of Agriculture and Biosciences, 4: 167-170.

Ali, A., Mohammad, S., Khan, M. A., Raja, N. I., Arif, M., Kamil, A. y Mashwani. Z. U. R. (2019). Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculate. Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 715-724. https://doi.org/10.1080/21691401.2019.1577884.

Almanza-Reyes, H., Moreno, S., Plascencia-López, I. Alvarado-Vera, M., Patrón-Romero, L., Borrego, B. et al. (2021). Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS ONE, 16(8): e0256401. https://doi.org/10.1371/journal.pone.0256401.

Arab, M. M., Yadollahi, A., Hosseini-Mazinani, M. y Bagheri, S. (2014). Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of GN15 (hybrid of almond peach) rootstock. Journal of Genetic Engineering and Biotechnology, 12: 103-110.

Aragón, C. E., Sánchez, C., González-Olmedo, J., Escalona, M., Carvalho, L. y Amâncio, S. (2014). Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol Plant, 58: 29-38. https://doi.org/10.1007/s10535-013-0381-6.

Bello-Bello, J. J., Schettino-Salomón, S., Ortega-Espinoza, J. et al. (2021). A temporary immersion system for mass micropropagation of pitahaya (Hylocereus undatus). 3 Biotech, 11: 437. https://doi.org/10.1007/s13205-021-02984-5.

Bello-Bello, J. J., Chávez-Santoscoy, R. A., Lecona-Guzmán, C. A. et al. (2017). Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. Cv. Mex 69-290) using a temporary immersion system. Dose-Response, https://doi.org/10.1177/1559325817744945.

Bello-Bello, J. J., Spinoso-Castillo, J. L., Arano-Ávalos, S., Martínez-Estrada, E., Arellano-García, M. E., Pestryakov, A., Toledano-Magaña, Y., García-Ramos, J. C. y Bogdanchikova, N. (2018). Cytotoxic, genotoxic, and polymorphism effects on Vanilla planifolia Jacks. ex Andrews after long-term exposure to Argovit® silver nanoparticles. Nanomaterials, 8, 754. https://doi.org/10.3390/nano8100754.

Borrego, B., Lorenzo, G., Mota-Morales, J. D., Almanza-Reyes, H., Mateos, F., y López-Gil, E. et al. (2016). Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine Nanotechnology Biol Med, 12. https://doi.org/10.1016/j.nano.2016.01.021.

Calabrese, E. J. (2008). Converging concepts: adaptive response, preconditioning, and the Yerkes–Dodson law are manifestations of hormesis. J Ageing Res Rev, 7: 8-20.

Calabrese, E. J. y Mattson, M. P. (2011). Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal, 5: 25-38. https://doi.org/10.1007/s12079-011-0119-1.

Calabrese, E. J., Agathokleous, E., Kapoor, R., Dhawan, G. y Calabrese, V. (2021). Luteolin and hormesis. Mechanisms of Ageing and Development, 199: 111559.

Cardoso, J. C. (2019). Silver nitrate enhances in vitro development and quality of shoots of Anthurium andraeanum. Scientia Horticulturae, 253: 358-363.

Castañeda-Yslas, I. Y., Torres-Bugarín, O., García-Ramos, J. C., Toledano-Magaña, Y., Radilla-Chávez, P., Bogdanchikova, N., Pestryakov, A., Ruiz-Ruiz, B. y Arellano-García, M. E. (2021). AgNPs Argovit™ modulates cyclophosphamide-induced genotoxicity on peripheral blood erythrocytes in vivo. Nanomaterials, 11: 2096. https://doi.org/10.3390/nano11082096.

Castro-González, C. G., Sánchez-Segura, L., Gómez-Merino, F. C. y Bello-Bello, J. J. (2019). Exposure of stevia (Stevia rebaudiana B) to silver nanoparticles in vitro: transport and accumulation. Scientific Reports, 9: 10372. https://doi.org/10.1038/s41598-019-46828-y.

Crisan, C. M., Mocan, T., Manolea, M., Lasca, L. I., Tabaran, F. A. y Mocan, L. (2021). Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences, 11: 1120. https://doi.org/10.3390/app11031120.

Da Costa, M. V. J., y Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oriza sativa. Photosynthetica, 54(1): 110-119. https://doi.org/10.1007/s11099-015-0167-5.

Fuentes, S. R. L., Calheiros, M. B. P., Manetti-Filho, J. y Vieira, L. G. E. (2000). The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tiss Org Cult, 60(1): 5-13.

García-Sánchez, S., Gala, M. y Žoldák, G. (2021). Nanoimpact in plants: Lessons from the transcriptome. Plants, 10: 751. https://doi.org/10.3390/plants10040751.

Giridhar, P., Indu, E. P., Vinod, K., Chandrashekar, A. y Ravishankar, G. A. (2004). Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P ex Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiologiae Plantarum, 26(3): 299-305.

Guo, W., Liu, W., Xu, L., Feng, P., Zhang, Y. R., Yang, W. J. y Shuai, C. J. (2020). Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds, J. Mater. Sci. Technol, 46: 237-247. https://doi.org/10.1016/j.jmst.2019.11.019.

Hu, J., y Xianyu Y. (2021). When nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today, 38: 101143. https://doi.org/10.1016/j.nantod.2021.101143.

Jalal, A., Oliveira Junior, J. C., Ribeiro, J. S., Fernandes, G. C., Mariano, G. G., Trindade, V. y Reis, A. (2021). Hormesis in plants: Physiological and biochemical responses. Ecotoxicology and environmental safety, 207: 111225. https://doi.org/10.1016/j.ecoenv.2020.111225.

Juárez-Moreno, K. O., González, E. B., Giron-Vázquez, N., Chávez, A., Mota-Morales, J. D., Pérez-Mozqueda, L. L., García-García, M. R., Pestryakov, A., Bogdanchikova, N. (2016). Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Human Exper Toxicol, 36(9): 031-948. https://doi.org/10.1177/0960327116675206.

Kale, S., Parishwad, G.V., Husainy, A. S. N. y Patil, A. S. (2021). Emerging agriculture applications of silver nanoparticles. Engineered Science Food and Agroforestry, 3: 17-22. https://dx.doi.org/10.30919/esfaf438.

Iavicoli, I., Leso, V., Fontana, L. y Calabrese, E. J. (2018). Nanoparticle exposure and hormetic dose–responses: An update. Int. J. Mol. Sci, 19: 805. https://doi.org/10.3390/ijms19030805.

Ma, Y., Kuang, L., He, X., Bai, W., Ding, Y., Zhang, Z., Zhao, Y. y Chai, Z. (2010). Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 78: 273-279.

Manh-Cuong, D., Cong Du, P., Tung, H. T. et al. (2021). Silver nanoparticles as an effective stimulant in micropropagation of Panax vietnamensis – a valuable medicinal plant. Plant Cell Tissue and Organ Culture. https://doi.org/10.1007/s11240-021-02095-2.

Ngan, H. T. M., Cuong, D. M., Tung, H. T., Nghiep, N. D., Le, B. V. y Nhut, D. T. (2020). The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrid L. ‘Baby Love’) plantlets cultured in vitro. Plant Cell Tissue and Organ Culture, 141(2): 393-405. https://doi.org/10.1007/s11240-020-01796-4.

Panda, K. K., Achary, V. M. M., Phaomie, G., Sahu, H. K., Parinandi, N. L. y Panda, B. B. (2016). Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 806: 11-23.

Park, J. S., Naing, A. H. y Kim, C. K. (2016). Effects of ethylene on shoot initiation, leaf yellowing, and shoot tip necrosis in roses. Plant Cell Tiss Organ Cult, 127: 425-431. https://doi.org/10.1007/s11240-016-1066-6.

Parzymies, M., Pudelska, K. y Poniewozik, M. (2019). The use of nano-silver for disinfection of Pennisetum alopecuroides plant material for tissue culture. Acta Scientiarum Polonorum Hortorum Cultus, 18(3): 127-135. https://doi.org/10.24326/asphc.2019.3.12.

Pastelín-Solano, M. C., Ramírez-Mosqueda, M. A., Bogdanchikova, N., Castro-González, C. G. y Bello-Bello, J. J. (2020). Las nanopartículas de plata afectan la micropropagación de vainilla (Vanilla planifolia Jacks. ex Andrews). Agrociencia, 54: 1-13.

Ramírez-Mosqueda, M. A., Sánchez-Segura, L., Hernández-Valladolid, S. L. et al. (2020). Influence of silver nanoparticles on a common contaminant isolated during the establishment of Stevia rebaudiana Bertoni culture. Plant Cell Tissue and Organ Culture, 143: 609-618. https://doi.org/10.1007/s11240-020-01945-9.

Rodríguez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E. y Bleecker, A. B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283: 996-998.

Salama, D. M., Abd El-Aziz, M. E., Rizk, F. A. y Abd Elwahed, M. S. A. (2021). Applications of nanotechnology on vegetable crops. Chemosphere, 266: 129026.

Sarmast, M. K., Salehi, H. y Khosh-Khui, M. (2011). Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. Glauca explants. Acta Biologica Hungarica, 62: 477-484.

Sarmast, M. K. y Salehi, H. (2016). Silver nanoparticles: An influential element in plant nanobiotechnology. Mol Biotechnol, 58: 441-449. https://doi.org/10.1007/s12033-016-9943-0.

Sarmast, M. K. y Salehi, H. (2021). Sub-lethal concentrations of silver nanoparticles mediate a phytostimulatory response in tobacco via the suppression of ethylene biosynthetic genes and the ethylene signaling pathway. In Vitro Cell. Dev. Biol.-Plant. https://doi.org/10.1007/s11627-021-10193-1.

Shaikhaldein, H.O., Al-Qurainy, F., Nadeem, M. et al. (2020). Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci Rep, 10: 17569. https://doi.org/10.1038/s41598-020-74675-9.

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H. y Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24: 2558. https://doi.org/10.3390/molecules24142558.

Sorcia-Morales, M., Gómez-Merino, F. C., Sánchez-Segura, L., Spinoso-Castillo, J. L. y Bello-Bello, J. J. (2021). Multi-walled carbon nanotubes improved development during in vitro multiplication of sugarcane (Saccharum spp.) in a semi-automated bioreactor. Plants, 10: 2015. https://doi.org/10.3390/plants10102015.

Spinoso-Castillo, J. L., Chávez-Santoscoy, R. A., Bogdanchikova, N., Pérez-Sato, J. A., Morales-Ramos, V. y Bello-Bello, J. J. (2017). Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue and Organ Culture, 129: 195-207. https://doi.org/10.1007/s11240-017-1169-8.

Steinitz, B., Barr, N., Tabib, Y., Vaknin, Y. y Bernstein, N. (2010). Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep, 29(11): 1315-1323.

Taiz, L., Zeiger, E., Møller, I. M. y Murphy, A. (2015). Plant physiology and development. Sinauer Associates, Inc., 761.

Thao, N. P., Khan, M. I. R., Thu, N. B. A., Hoang, X. L. T., Asgher, M., Khan, N. A. y Tran, L. S. P. (2015). Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiology, 169(1): 73-84.

Tung, H. T., Bao, H. G., Cuong, D. M. et al. (2021b). Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum. In Vitro Cellular & Developmental Biology – Plant, https://doi.org/10.1007/s11627-021-10163-7.

Tung, H. T., Thuong, T. T., Cuong, D. M. et al. (2021a). Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell Tissue and Organ Culture, 145: 393-403. https://doi.org/10.1007/s11240-021-02015-4.

Vázquez-Muñoz, R., Ávalos-Borja, M. y Castro-Longoria, E. (2014). Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PloS ONE, 9: e108876. https://doi.org/10.1371/journal.pone.0108876.

Vázquez-Muñoz, R., Borrego, B., Juárez-Moreno, K., García-García, M., Mota Morales, J. D., Bogdanchikova, N. y Huerta-Saquero, A. (2017). Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicology letters, 276: 11-20. https://doi.org/10.1016/j.toxlet.2017.05.007.

Villarreal-Gómez, L. J., Pérez-González, G. L., Bogdanchikova, N., Pestryakov, A., Nimaev, V., Soloveva, A., Cornejo-Bravo, J. M., y Toledaño-Magaña, Y. (2021). Antimicrobial effect of electrospun nanofibers loaded with silver nanoparticles: Influence of Ag incorporation method. Journal of Nanomaterials. https://doi.org/10.1155/2021/9920755.

Publicado
2022-08-22
Cómo citar
Bello-Bello, J., & Spinoso Castillo, J. (2022). Utilización de nanopartículas de plata en la micropropagación de plantas. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(30), 1e-14e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69692