Análisis de las propiedades vibracionales del crotonaldehído: DFT vs MD

  • Ricardo Ruvalcaba Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0002-8232-8127
  • Jonathan Guerrero-Sánchez Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0003-1457-9677
  • Noboru Takeuchi Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología
Palabras clave: espectro infrarrojo, teoría del funcional de la densidad, dinámica molecular

Resumen

La dinámica molecular (MD, por sus siglas en inglés) y la teoría del funcional de la densidad (DFT, por sus siglas en inglés) son actualmente las teorías más utilizadas en ciencia computacional de materiales. Ambas tienen alcances y aplicaciones distintas, pero convergen en ciertas áreas. El presente trabajo hace una comparación y contraste entre la exactitud de ambas teorías para modelar el espectro infrarrojo de una molécula orgánica sencilla pero representativa: el crotonaldehído. Se lleva a cabo un análisis de las energías, distancias de enlace, frecuencias e intensidades vibracionales para determinar las ventajas y desventajas de cada teoría en este marco de cálculo.

Citas

ATSDR. (s. f.). Toxfaqs™—Letter a | toxic substance portal | atsdr. (Consultado, noviembre 1, 2021). https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsLanding.aspx

Bhoskar, Ms. T., Kulkarni, Mr. O. K., Kulkarni, Mr. N. K., Patekar, Ms. S. L., Kakandikar, G. M. y Nandedkar, V. M. (2015). Genetic algorithm and its applications to mechanical engineering: A review. Materials Today: Proceedings, 2(4-5): 2624-2630. https://doi.org/10.1016/j.matpr.2015.07.219

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24): 17953-17979. https://doi.org/10.1103/PhysRevB.50.17953

Braun, E. (2016). Open source code: Calculating an ir spectra from a lammps simulation. Zenodo. https://doi.org/10.5281/ZENODO.154672

Car, R. y Parrinello, M. (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, 55(22): 2471-2474. https://doi.org/10.1103/PhysRevLett.55.2471

Cataldo, F., Iglesias-Groth, S. y Manchado, A. (2010). Low and high temperature infrared spectroscopy of c 60 and c 70 fullerenes. Fullerenes, Nanotubes and Carbon Nanostructures, 18(3): 224-235. https://doi.org/10.1080/15363831003782940

De Groot, M. S. y Lamb, J. (1957). Ultrasonic relaxation in the study of rotational isomers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 242(1228): 36-56. https://doi.org/10.1098/rspa.1957.0152

Gallezot, P. y Richard, D. (1998). Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews, 40(1-2): 81-126. https://doi.org/10.1080/01614949808007106

Haley, B. (2016). LAMMPS structure generator. https://doi.org/https://doi.org/10.4231/D34B2X60F

Haubrich, J., Loffreda, D., Delbecq, F., Sautet, P., Krupski, A., Becker, C. y Wandelt, K. (2009). Adsorption of α,β-unsaturated aldehydes on pt(111) and pt−sn alloys: Ii. crotonaldehyde. The Journal of Physical Chemistry C, 113(31): 13947-13967. https://doi.org/10.1021/jp903473m

Honorio, T. (2019). Monte Carlo molecular modeling of temperature and pressure effects on the interactions between crystalline calcium silicate hydrate layers. Langmuir, 35(11): 3907-3916. https://doi.org/10.1021/acs.langmuir.8b04156

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science y Engineering, 9(3): 90-95. https://doi.org/10.1109/MCSE.2007.55

Infrared: Interpretation. (2013, octubre 2). Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_Interpretation

Karhánek, D. (2020). Dakarhanek/vasp-infrared-intensities: Vasp-infrared-intensities (v1.0) [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.3930989

Kong, L. T. (2011). Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications, 182(10): 2201-2207. https://doi.org/10.1016/j.cpc.2011.04.019

Kresse, G. y Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16): 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169

Leach, A. R. (2001). Molecular modelling: Principles and applications, Chapter 4: Empirical Force Field Models: Molecular Mechanics, 2a ed. Prentice Hall, 165-247.

Lee, J. W., Nilson, R. H., Templeton, J. A., Griffiths, S. K., Kung, A. y Wong, B. M. (2012). Comparison of molecular dynamics with classical density functional and Poisson–Boltzmann theories of the electric double layer in nanochannels. Journal of Chemical Theory and Computation, 8(6): 2012-2022. https://doi.org/10.1021/ct3001156

Lindenmaier, R., Williams, S. D., Sams, R. L. y Johnson, T. J. (2017). Quantitative infrared absorption spectra and vibrational assignments of crotonaldehyde and methyl vinyl ketone using gas-phase mid-infrared, far-infrared, and liquid raman spectra: S-cis vs s-trans composition confirmed via temperature studies and ab initio methods. The Journal of Physical Chemistry A, 121(6): 1195-1212. https://doi.org/10.1021/acs.jpca.6b10872

Magnasco, V. (2013). Post-hartree–fock methods. En Elementary molecular quantum mechanics. Elsevier, 681-722. https://doi.org/10.1016/B978-0-444-62647-9.00016-6

Momma, K. y Izumi, F. (2011). Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6): 1272-1276. https://doi.org/10.1107/S0021889811038970

Oukhrib, R., Abdellaoui, Y., Berisha, A., Abou Oualid, H., Halili, J., Jusufi, K., Ait El Had, M., Bourzi, H., El Issami, S., Asmary, F. A., Parmar, V. S. y Len, C. (2021). DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media. Scientific Reports, 11(1): 3771. https://doi.org/10.1038/s41598-021-82927-5

Perdew, J. P., Burke, K. y Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18): 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

Pittalis, S., Proetto, C. R., Floris, A., Sanna, A., Bersier, C., Burke, K. y Gross, E. K. U. (2011). Exact conditions in finite-temperature density-functional theory. Physical Review Letters, 107(16): 163001. https://doi.org/10.1103/PhysRevLett.107.163001

Plimpton, S. J. y Thompson, A. P. (s.f.). Pair_style lj/cut/coul/cut command—Lammps documentation. Retrieved November 1, 2021, from https://docs.lammps.org/pair_lj_cut_coul.html

Pribram-Jones, A., Grabowski, P. E. y Burke, K. (2016). Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem. Physical Review Letters, 116(23): 233001. https://doi.org/10.1103/PhysRevLett.116.233001

PubChem. (s. f.-a). Crotonaldehyde. (Consultado, noviembre 1, 2021). https://pubchem.ncbi.nlm.nih.gov/compound/447466

PubChem. (s. f.-b). Hazardous substances data bank (Hsdb): 2871. (Consultado, noviembre 1, 2021). https://pubchem.ncbi.nlm.nih.gov/source/hsdb/2871# section=Human-Health-Effects

Qin, W., Li, X., Bian, W.-W., Fan, X.-J. y Qi, J.-Y. (2010). Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials, 31(5): 1007-1016. https://doi.org/10.1016/j.biomaterials.2009.10.013

Rogge, S. M. J., Goeminne, R., Demuynck, R., Gutiérrez‐Sevillano, J. J., Vandenbrande, S., Vanduyfhuys, L., Waroquier, M., Verstraelen, T. y Van Speybroeck, V. (2019). Modeling gas adsorption in flexible metal-organic frameworks via hybrid monte carlo/molecular dynamics schemes. Advanced Theory and Simulations, 2(4): 1800177. https://doi.org/10.1002/adts.201800177

Rohatgi, A. (s. f.). Webplotdigitizer. (Consultado, noviembre 1, 2021). https://automeris.io/WebPlotDigitizer/

Smith, B. (s. f.). Alcohols—The rest of the story. Spectroscopy Online. (Consultado, noviembre 1, 2021). https://www.spectroscopyonline.com/view/alcohols-rest-story-alf3

Software for Chemistry y Materials. (2021). ReaxFF – Force field format specification. https://www.scm.com/doc/ReaxFF/ffield_descrp.html

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C. y Plimpton, S. J. (2022). LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271: 108171. https://doi.org/10.1016/j.cpc.2021.108171

Van Duin, A. C. T., Dasgupta, S., Lorant, F. y Goddard, W. A. (2001). ReaxFF: A reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41): 9396-9409. https://doi.org/10.1021/jp004368u

Wiley, J. y Sons, Inc. (s.f.). Crotonaldehyde—Ftir—Spectrum—Spectrabase. (Consultado, noviembre 1, 2021). https://spectrabase.com/spectrum/69ZANaBjwub

Wu, X., Vanderbilt, D. y Hamann, D. R. (2005). Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Physical Review B, 72(3): 035105. https://doi.org/10.1103/PhysRevB.72.035105

Zhang, L., Zhou, M., Wang, A. y Zhang, T. (2020). Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chemical Reviews, 120(2): 683-733. https://doi.org/10.1021/acs.chemrev.9b00230

Publicado
2022-02-22
Cómo citar
Ruvalcaba, R., Guerrero-Sánchez, J., & Takeuchi, N. (2022). Análisis de las propiedades vibracionales del crotonaldehído: DFT vs MD. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 15(29), 1e-14e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69707