A review of advanced microscopy techniques for the development of nanotechnology in agriculture, food, and the environment

Palabras clave: microscopic techniques, microstructure, characterization, nanometric resolution

Resumen

Microscopy techniques are essential for understanding the structure of materials of interest in agriculture, food, and the environment. These techniques can be classified according to their operating principles, such as fluorescence, electron, and probe scanning. Their complementary techniques provide specific advantages in the characterization of materials in the above mentioned fields. These approaches facilitate the characterization of the structure and morphology at nanometric and atomic scales of different materials through high-resolution images, as well as the analysis of important characteristics related to the composition and distribution of specific components. In this work, detailed descriptions are given of the operation principles of light microscopy (LM), confocal laser scanning microscopy (CLSM), superresolution microscopy (SRM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). A compilation of operating principles is presented along with examples obtained with advanced microscopy techniques applied to the afore mentioned areas. In addition, the preparation of the samples to obtain the final images is described in order to explain the interaction of the sample with the modes of operation for each technique. This review provides an overview of microscopy techniques used in various fields of nanotechnology, including agriculture, food, and the environment.

Citas

Abbe, E. (1873). Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop., X: 413-420.

Abdel-Hafez, S. M., Hathout, R. M. & Sammour, O. A. (2018). Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. International Journal of Biological Macromolecules, 108: 753-764. https://doi.org/10.1016/j.ijbiomac.2017.10.170.

Almada, P., Culley, S. & Henriques, R. (2015). PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors. Methods, 88: 109-121. https://doi.org/10.1016/j.ymeth.2015.06.004.

Bendersky, L. A. & Gayle, F. W. (2001). Electron diffraction using transmission electron microscopy. Journal of Research of the National Institute of Standards and Technology, 106(6): 997-1012. https://doi.org/10.6028/jres.106.051.

Benini, K. C. C. de C., Voorwald, H. J. C., Cioffi, M. O. H., Rezende, M. C. & Arantes, V. (2018). Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate Polymers, 192(March): 337-346. https://doi.org/10.1016/j.carbpol.2018.03.055.

Binnig, G. & Quate, C. F. (1986). Atomic force microscope. Physical Review Letters, 56(9): 930-933. https://doi.org/10.1103/PhysRevLett.56.930.

Bradbury, S. & Evennett, P. J. (2019). Contrast techniques in light microscopy. CRC press LLC.

Butt, H. J., Cappella, B. & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6): 1-152. https://doi.org/10.1016/j.surfrep.2005.08.003.

Cárdenas-Pérez, S., Chanona-Pérez, J. J., De Jesús Perea-Flores, M., Calderón, H., Piernik, A., López-Soto, K. D. & García González, C. B. (2020). Microstructure of Salicornia bigelovii stems under photonic and electron microscopy. Microscopy and Microanalysis, 26(S2): 360-362. https://doi.org/10.1017/S1431927620014385.

Cárdenas-Pérez, S., Chanona-Pérez, J. J., Güemes-Vera, N., Cybulska, J., Szymanska-Chargot, M., Chylinska, M., Kozioł, A., Gawkowska, D., Pieczywek, P. M. & Zdunek, A. (2018). Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydrate Polymers, 196(May): 313-321. https://doi.org/10.1016/j.carbpol.2018.05.044.

Cárdenas-Pérez, S., Chanona-Pérez, J. J., Méndez-Méndez, J. V., Calderón-Domínguez, G., López-Santiago, R. & Arzate-Vázquez, I. (2016). Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innovative Food Science and Emerging Technologies, 34: 234-242. https://doi.org/10.1016/j.ifset.2016.02.004.

Cárdenas-Pérez, S., Méndez-Méndez, J. V, Chanona-Pérez, J. J., Zdunek, A., Güemes-Vera, N., Calderón-Domínguez, G. & Rodríguez-González, F. (2017). Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innovative Food Science and Emerging Technologies, 39: 79-87. https://doi.org/10.1016/j.ifset.2016.11.004.

Cárdenas-Pérez, S., Piernik, A., Ludwiczak, A., Duszyn, M., Szmidt-Jaworska, A. & Chanona-Pérez, J. J. (2020). Image and fractal analysis as a tool for evaluating salinity growth response between two Salicornia europaea populations. BMC Plant Biology, 20(1): 1-14. https://doi.org/10.1186/s12870-020-02633-8.

Chiarini-Garcia, H. & Melo, R. (2011). Light microscopy, Hélio Chiarini-García & R. C. N. Melo (eds.), vol. 689. Humana Press. https://doi.org/10.1007/978-1-60761-950-5.

Coltharp, C. & Xiao, J. (2012). Superresolution microscopy for microbiology. Cellular Microbiology, 14(12): 1808-1818. https://doi.org/10.1111/cmi.12024.

Cremer, C. & Masters, B. R. (2013). Resolution enhancement techniques in microscopy. European Physical Journal H, 38(3): 281-344. https://doi.org/10.1140/epjh/e2012-20060-1.

Davidson, M. W., & Abramowitz, M. (2002). Optical microscopy. In Encyclopedia of imaging science and technology, 2(120): 1106–1141.

Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization-based superresolution imaging. Analysis, 1st ed., 8(12). https://doi.org/10.1083/jcb.201002018.

Dufrêne, Y. F. (2008). AFM for nanoscale microbe analysis. Analyst, 133(3): 297-301. https://doi.org/10.1039/b716646j.

Dumbović, G., Sanjuan, X., Perucho, M. & Forcales, S. V. (2021). Stimulated emission depletion (STED) super resolution imaging of RNA- and protein-containing domains in fixed cells. Methods, 187(February 2020): 68-76. https://doi.org/10.1016/j.ymeth.2020.04.009.

Friedrich, M. (2003). Microscopy techniques for neuroscience. Wiley, 212(2). https://doi.org/10.1046/j.1365-2818.2003.01241.x.

García-Medina, S., Galar-Martínez, M., Cano-Viveros, S., Ruiz-Lara, K., Gómez-Oliván, L. M., Islas-Flores, H., Gasca-Pérez, E., Pérez-Pastén-Borja, R., Arredondo-Tamayo, B., Hernández-Varela, J. & Chanona-Pérez, J. J. (2022). Bioaccumulation and oxidative stress caused by aluminium nanoparticles and the integrated biomarker responses in the common carp (Cyprinus carpio). Chemosphere, 288(132462): 1-12. https://doi.org/10.1016/j.chemosphere.2021.132462.

García, R. & Pérez, R. (2002). Dynamic atomic force microscopy methods. Surface Science Reports, 47(6-8). https://doi.org/10.1016/s0167-5729(02)00077-8.

Gavara, N. (2016). Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Scientific Reports, 6(February): 1-13. https://doi.org/10.1038/srep21267.

Glover, Z. J., Bisgaard, A. H., Andersen, U., Povey, M. J., Brewer, J. R. & Simonsen, A. C. (2019). Cross-correlation analysis to quantify relative spatial distributions of fat and protein in superresolution microscopy images of dairy gels. Food Hydrocolloids, 97(July): 105225. https://doi.org/10.1016/j.foodhyd.2019.105225.

Goldstein, J., Newbury, D., Michael, J., Ritchie, N., Scott, J. & Joy, D. (2018). Scanning electron microscopy and X-ray microanalysis (Fourth). Springer. https://doi.org/10.1080/09553006114550601.

González-Lemus, L. B., Calderón-Domínguez, G., De la Paz Salgado-Cruz, M., Díaz-Ramírez, M., Ramírez-Miranda, M., Chanona-Pérez, J. J., Güemes-Vera, N. & Farrera-Rebollo, R. R. (2018). Ultrasound-assisted extraction of starch from frozen jicama (P. erosus) roots: Effect on yield, structural characteristics and thermal properties. CYTA – Journal of Food, 16(1): 738-746. https://doi.org/10.1080/19476337.2018.1462852.

Hawkes, P. & Spence, J. (eds.) (2019). Handbook microscopy. Springer.

Hayden, J. E. (2002). Adventures on the dark side: An introduction to darkfield microscopy. BioTechniques, 32(4): 756-761. https://doi.org/10.2144/02324bi01.

Hein, B., Willig, K. I. & Hell, S. W. (2008). Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proceedings of the National Academy of Sciences of the United States of America, 105(38): 14271-14276. https://doi.org/10.1073/pnas.0807705105.

Heintzmann, R. & Huser, T. (2017). Super-resolution structured illumination microscopy. Chemical Reviews, 117(23): 13890-13908. https://doi.org/10.1021/acs.chemrev.7b00218.

Herman, B. & Lemasters, J. (1992). Optical microscopy: emerging methods and applications. Methods in Molecular Biology. Academic Press, Inc.

Hernández-Botello, M. T., Barriada-Pereira, J. L., de Vicente, M. E. S., Mendoza-Pérez, J. A., Chanona-Pérez, J. J., López-Cortez, M. S. & Téllez-Medina, D. I. (2020). Determination of biosorption mechanism in biomass of agave, using spectroscopic and microscopic techniques for the purification of contaminated water. Revista Mexicana de Ingeniería Química, 19(1): 215-226. https://doi.org/10.24275/rmiq/IA501.

Hernández-Varela, J., Chanona-Pérez, J., Calderón-Benavides, H., Cervantes-Sodi, F. & Vicente-Flores, M. (2021a). Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydrate Polymers, 255(117347): 1-12. https://doi.org/10.1016/j.carbpol.2020.117347.

Hernández-Varela, J. D., Chanona-Pérez, J. J., Calderón Benavides, H. A., Gallegos Cerda, S. D., Gonzalez Victoriano, L., Perea Flores, M. de J., Campos López, M., Rojas Candelas, L. E., & Arrendondo Tamayo, B. (2021b). CLSM and TIRF images from lignocellulosic materials: garlic skin and agave fibers study. Microscopy and Microanalysis, 27(S1): 1730-1734. https://doi.org/10.1017/s1431927621006334.

Hernández-Varela, J., Villaseñor-Altamirano, S., Chanona-Pérez, J., González Victoriano, L., Perea Flores, M., Calderón Benavides, H., Cervantes Sodi, F., Martínez-Mercado, E. & Morgado Aucar, P. (2022). Effect of cellulose nanoparticles from garlic waste on the structural, mechanical, thermal and dye removal properties of chitosan/alginate aerogel. Journal of Polymer Research, 29(133): 1-16. https://doi.org/10.1007/s10965-022-02926-6.

Huszka, G. & Gijs, M. A. M. (2019). Superresolution optical imaging: A comparison. Micro and Nano Engineering, 2: 7-28. https://doi.org/https://doi.org/10.1016/j.mne.2018.11.005.

Jalili, N. & Laxminarayana, K. (2004). A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics, 14(8): 907-945. https://doi.org/10.1016/j.mechatronics.2004.04.005.

Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. (2020). Tutorial: guidance for quantitative confocal microscopy. Nature Protocols, 15(5): 1585-1611. https://doi.org/10.1038/s41596-020-0313-9.

Jost, A. & Heintzmann, R. (2013). Superresolution multidimensional imaging with structured illumination microscopy keynote topic. https://doi.org/10.1146/annurev-matsci-071312-121648.

Kim, M. & Chelikowsky, J. R. (2014). Simulated non-contact atomic force microscopy for GaAs surfaces based on real-space pseudopotentials. Applied Surface Science, 303: 163-167. https://doi.org/10.1016/j.apsusc.2014.02.127.

Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America, 97(15): 8206-8210. https://doi.org/10.1073/pnas.97.15.8206.

Kozma, E. & Kele, P. (2019). Fluorogenic probes for superresolution microscopy. Organic and Biomolecular Chemistry, 17(2): 215-233. https://doi.org/10.1039/c8ob02711k.

Kudalkar, E. M., Davis, T. N. & Asbury, C. L. (2016). Single-molecule total internal reflection fluorescence microscopy. Cold Spring Harbor Protocols, 2016(5): 435-438. https://doi.org/10.1101/pdb.top077800.

Kulkarni, S. K. (2015). Nanotechnology – Principles and Practices. Springer.

Kwaśniewska, A., Świetlicki, M., Prószyński, A. & Gładyszewski, G. (2021). The quantitative nanomechanical mapping of starch/kaolin film surfaces by peak force afm. Polymers, 13(2): 1-11. https://doi.org/10.3390/polym13020244.

Lacey, A. J. (1999). Light microscopy in biology: A practical approach (Secod). Oxford University Press.

Lawlor, D. (2019). Introduction to light microscopy. Springer International Publishing. https://doi.org/10.1007/978-3-030-05393-2.

Lenthe, W. C., Stinville, J. C., Echlin, M. P., Chen, Z., Daly, S. & Pollock, T. M. (2018). Advanced detector signal acquisition and electron beam scanning for high resolution SEM imaging. Ultramicroscopy, 195(September): 93-100. https://doi.org/10.1016/j.ultramic.2018.08.025.

López-Ordaz, P., Chanona-Pérez, J. J., Perea-Flores, M. J., Sánchez-Sources, C. E., Mendoza-Pérez, J. A., Arzate-Vázquez, I., Yáñez-Fernández, J. & Torres-Ventura, H. H. (2019). Effect of the extraction by thermosonication on castor oil quality and the microstructure of its residual cake. Industrial Crops and Products, 141: 111760. https://doi.org/10.1016/j.indcrop.2019.111760.

Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E. & Lippincott-Schwartz, J. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods, 5(2): 155-157. https://doi.org/10.1038/nmeth.1176.

Mao, X., Liu, C., Hesari, M., Zou, N. & Chen, P. (2019). Superresolution imaging of non-fluorescent reactions via competition. Nature Chemistry, 11(8): 687-694. https://doi.org/10.1038/s41557-019-0288-8.

Marin-Bustamante, M. Q., Chanona-Pérez, J. J., Güemes-Vera, N., Arzate-Vázquez, I., Perea-Flores, M. J., Mendoza-Pérez, J. A., Calderón-Domínguez, G., & Casarez-Santiago, R. G. (2018). Evaluation of physical, chemical, microstructural and micromechanical properties of nopal spines (Opuntia ficus-indica). Industrial Crops and Products, 123: 707-718. https://doi.org/10.1016/j.indcrop.2018.07.030.

McMullan, D. (1995). Scanning electron microscopy 1928-1965. Scanning, 17(3): 175-185. https://doi.org/10.1002/sca.4950170309.

Mikami, H., Harmon, J., Kobayashi, H., Hamad, S., Wang, Y., Iwata, O., Suzuki, K., Ito, T., Aisaka, Y., Kutsuna, N., Nagasawa, K., Watarai, H., Ozeki, Y. & Goda, K. (2018). Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica, 5(2): 117. https://doi.org/10.1364/optica.5.000117.

Mondal, P. P. & Diaspro, A. (2014). Fundamentals of fluorescence microscopy. In Fluorescence Microscopy. Springer Netherlands. https://doi.org/10.1007/978-94-007-7545-9.

Neri-Torres, E. E., Chanona-Pérez, J. J., Calderón, H. A., Torres-Figueredo, N., Chamorro-Cevallos, G., Calderón-Domínguez, G. & Velasco-Bedrán, H. (2016). Structural and physicochemical characterization of Spirulina (Arthrospira maxima) nanoparticles by high-resolution electron microscopic techniques. Microscopy and Microanalysis, 22(4): 887-901. https://doi.org/10.1017/S1431927616011442.

Nicolás-Álvarez, D. E., Andraca-Adame, J. A., Chanona-Pérez, J. J., Méndez-Méndez, J. V., Borja-Urby, R., Cayetano-Castro, N., Martínez-Gutiérrez, H. & López-Salazar, P. (2021). Effects of TiO2 nanoparticles incorporation into cells of tomato roots. Nanomaterials, 11(5): 1-14. https://doi.org/10.3390/nano11051127.

Oatley, C. W. (1982). The early history of the scanning electron microscope. Journal of Applied Physics, 53(2). https://doi.org/10.1063/1.331666.

Oheim, M., Salomon, A., Weissman, A., Brunstein, M. & Becherer, U. (2019). Calibrating evanescent-wave penetration depths for biological TIRF microscopy. Biophysical Journal, 117(5): 795-809. https://doi.org/10.1016/j.bpj.2019.07.048.

Olivier, T. & Moine, B. (2013). Confocal laser scanning microscopy. Optics in Instruments, 1-77. https://doi.org/10.1002/9781118574386.ch1.

Ortega-Toro, R., Contreras, J., Talens, P. & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(e{open}-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5: 10-20. https://doi.org/10.1016/j.fpsl.2015.04.001.

Pujals, S., Feiner-Gracía, N., Delcanale, P., Voets, I. & Albertazzi, L. (2019). Superresolution microscopy as a powerful tool to study complex synthetic materials. Nature Reviews Chemistry, 3(2): 68-84. https://doi.org/10.1038/s41570-018-0070-2.

Pyrz, W. D. & Buttrey, D. J. (2008). Particle size determination using TEM: A discussion of image acquisition and analysis for the novice microscopist. Langmuir, 24(20): 11350-11360. https://doi.org/10.1021/la801367j.

Rayleigh, L. (1896). On the theory of optical images, with special reference to the microscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(255): 167-195. https://doi.org/10.1080/14786449608620902.

Rojas-Candelas, L. E., Chanona-Pérez, J. J., Méndez Méndez, J. V., Perea-Flores, M. J., Cervantes-Sodi, F., Hernández-Hernández, H. M. & Marin-Bustamante, M. Q. (2021). Physicochemical, structural and nanomechanical study elucidating the differences in firmness among four apple cultivars. Postharvest Biology and Technology, 171: 111342. https://doi.org/10.1016/j.postharvbio.2020.111342.

Schubert, V. & Weisshart, K. (2015). Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei. Journal of Experimental Botany, 66(6): 1687-1698. https://doi.org/10.1093/jxb/erv091.

Smolyakov, G., Pruvost, S., Cardoso, L., Alonso, B., Belamie, E. & Duchet-Rumeau, J. (2016). AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites. Carbohydrate Polymers, 151: 373-380. https://doi.org/10.1016/j.carbpol.2016.05.042.

Splinter, R. (2010). Confocal microscopy. Handbook of physics in medicine and biology. March 2012, 27-1-27-5. https://doi.org/10.1201/9781420075250.

Torres-Ventura, H. H., Chanona-Pérez, J. J., Dorantes-Álvarez, L., Cauich-Sánchez, P. I., Méndez-Méndez, J. V., Aparicio-Ozores, G. & López-Ordaz, P. (2022). Effect of pepper extracts on the viability kinetics, topography and quantitative nanomechanics (QNM) of Campylobacter jejuni evaluated with AFM. Micron, 152(November 2021). https://doi.org/10.1016/j.micron.2021.103183.

Vaughan, J. C., Jia, S. & Zhuang, X. (2012). Ultrabright photoactivatable fluorophores created by reductive caging. Nature Methods, 9(12): 1181-1184. https://doi.org/10.1038/nmeth.2214.

Verma, D. S., Khan, L. U., Kumar, S. & Khan, S. B. (2018). Handbook of materials characterization. S. Sharma (ed.). Springer. https://doi.org/10.1007/978-3-319-92955-2_3.

Vicente-Flores, M., Güemes-Vera, N., Chanona-Pérez, J. J., Perea-Flores, M. de J., Arzate-Vázquez, I., Sánchez-Sources, C. E. & Quintero-Lira, A. (2020). Study of cellular architecture and micromechanical properties of cuajilote fruits (Parmentiera edulis D. C.) using different microscopy techniques. Microscopy Research and Technique, 84(1): 1-16. https://doi.org/10.1002/jemt.23559.

Villegas-Hernández, L. E., Nystad, M., Ströhl, F., Basnet, P., Acharya, G. & Ahluwalia, B. S. (2020). Visualizing ultrastructural details of placental tissue with superresolution structured illumination microscopy. Placenta, 97: 42-45. https://doi.org/https://doi.org/10.1016/j.placenta.2020.06.007.

Williams, D. B. & Carter, C. B. (2009). Transmission electron microscopy. D. B. Williams & C. B. Carter (eds.). Bull Acad Sci USSR Phys Ser (Columbia Tech Transl), 32(6). Springer.

Winey, M., Meehl, J. B., O’Toole, E. T. & Giddings, T. H. (2014). Conventional transmission electron microscopy. Molecular Biology of the Cell, 25(3): 319-323. https://doi.org/10.1091/mbc.E12-12-0863.

Yang, Z., Sharma, A., Qi, J., Peng, X., Lee, D. Y., Hu, R., Lin, D., Qu, J. & Kim, J. S. (2016). Superresolution fluorescent materials: An insight into design and bioimaging applications. Chemical Society Reviews, 45(17): 4651-4667. https://doi.org/10.1039/c5cs00875a.

Publicado
2022-08-22
Cómo citar
Gallegos-Cerda, S., Hernández-Varela, J., Arredondo-Tamayo, B., & Chanona Pérez, J. (2022). A review of advanced microscopy techniques for the development of nanotechnology in agriculture, food, and the environment. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(30), 1e-33e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69723