Evaluando la toxicidad de nanomateriales en modelos celulares tridimensionales

  • Karla Juárez-Moreno Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología
  • Kathya Angüis Delgado Universidad Xochicalco https://orcid.org/0000-0002-1834-4966
  • Brenda Palestina Romero Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0003-1504-798X
  • Rafael Vazquez Duhalt Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0003-1612-2996
Palabras clave: esferoides, nanotoxicología, citotoxicidad, cultivo celular

Resumen

Las evaluaciones in vitro para determinar el efecto citotóxico de los nanomateriales en cultivos celulares se han realizado de forma tradicional en cultivos bidimensionales. Esto se debe a que dichos protocolos se han adecuado a partir de aquellos utilizados en la toxicología. Sin embargo, las interacciones entre las células son mucho más complejas que las observadas en un arreglo en monocapa, siendo ésta la principal razón por la que, desde hace algunos años, se promueve la implementación de los cultivos celulares tridimensionales, a los que se les conoce como esferoides, para ser usados en las evaluaciones del efecto de los nanomateriales en cultivos celulares. Cada vez son más las evidencias que soportan la idea de que los esferoides representan un mejor modelo para el estudio de las respuestas celulares, pues emulan con mayor precisión las uniones celulares, comunicación y fisiología que sucede en un tejido dentro de un modelo in vivo. En este artículo, presentamos algunos puntos sobre el desarrollo de los cultivos 3D como una nueva y mejor metodología para las evaluaciones nanotoxicológicas.

Citas

Antoni, D., Burckel, H., Josset, E., Noel, G., Antoni, D., Burckel, H., Noel, G. (2015). Three-dimensional cell culture: A breakthrough in vivo. International Journal of Molecular Sciences, 16(12): 5517–5527. https://doi.org/10.3390/ijms16035517

Belli, V., Guarnieri, D., Biondi, M., della Sala, F. y Netti, P. A. (2017). Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures. Colloids and Surfaces B: Biointerfaces, 149: 7-15. https://doi.org/10.1016/j.colsurfb.2016.09.046

Chia, S. L., Tay, C. Y., Setyawati, M. I. y Leong, D. T. (2015). Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small, 11(6): 702-712. https://doi.org/10.1002/smll.201401915

Djordjevic, B. y Lange, C. S. (1990). Clonogenicity of mammalian cells in hybrid spheroids: a new assay method. Radiation and Environmental Biophysics, 29(1): 31-46. http://www.ncbi.nlm.nih.gov/pubmed/2305028

Fey, S. J. y Wrzesinski, K. (2012). Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicological Sciences, 127(2): 403-411. https://doi.org/10.1093/toxsci/kfs122

Gagner, J. E., Shrivastava, S., Qian, X., Dordick, J. S. y Siegel, R. W. (2012). Engineering nanomaterials for biomedical applications requires understanding the nano-bio interface: A perspective. Journal of Physical Chemistry Letters, 3(21): 3149-3158. https://doi.org/10.1021/jz301253s

Griffith, L. G. y Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3): 211-224. https://doi.org/10.1038/nrm1858

Huang, B. W. y Gao, J. Q. (2018,). Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research. Journal of Controlled Release, enero 28; 270: 246-259. Elsevier B.V. https://doi.org/10.1016/j.jconrel.2017.12.005

Huang, K., Ma, H., Liu, J., Huo, S., Kumar, A., Wei, T., … Liang, X.-J. (2012). Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano, 6(5): 4483-4493. https://doi.org/10.1021/nn301282m

Hussain, S. M., Warheit, D. B., Ng, S. P., Comfort, K. K., Grabinski, C. M. y Braydich-Stolle, L. K. (2015). At the crossroads of nanotoxicology in vitro: Past achievements and current challenges. Toxicological Sciences, 25, septiembre. Oxford University Press. https://doi.org/10.1093/toxsci/kfv106

Jarockyte, G., Dapkute, D., Karabanovas, V., Daugmaudis, J. V., Ivanauskas, F. y Rotomskis, R. (2018). 3D cellular spheroids as tools for understanding carboxylated quantum dot behavior in tumors. Biochimica et Biophysica Acta - General Subjects, 1862(4): 914-923. https://doi.org/10.1016/j.bbagen.2017.12.014

Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., Filas, V., … Lamperska, K. (2018). 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Archives of Medical Science, 14(4): 910-919. https://doi.org/10.5114/aoms.2016.63743

Katifelis, H., Lyberopoulou, A., Mukha, I., Vityuk, N., Grodzyuk, G., Theodoropoulos, G. E., … Gazouli, M. (2018). Ag/Au bimetallic nanoparticles induce apoptosis in human cancer cell lines via P53, CASPASE-3 and BAX/BCL-2 pathways. Artificial Cells, Nanomedicine and Biotechnology, 46(sup3), S389-S398. https://doi.org/10.1080/21691401.2018.1495645

Laschke, M. W. y Menger, M. D. (2016). Life is 3D: Boosting spheroid function for tissue engineering. Trends in Biotechnology, 35(2): 133-144. https://doi.org/10.1016/J.TIBTECH.2016.08.004

Laurent, S., Burtea, C., Thirifays, C., Häfeli, U. O. y Mahmoudi, M. (2012). Crucial ignored parameters on nanotoxicology: The importance of toxicity assay modifications and “cell vision.” PLoS ONE, 7(1): e29997. https://doi.org/10.1371/journal.pone.0029997

Lu, H. y Stenzel, M. H. (2018). Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small, 14(13): 1702858. https://doi.org/10.1002/smll.201702858

Matsumoto, K., Saitoh, H., Doan, T. L. H., Shiro, A., Nakai, K., Komatsu, A., … Tamanoi, F. (2019). Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49978-1

McElwain, D. L. S. y Pettet, G. J. (1993). Cell migration in multicell spheroids: Swimming against the tide. Bulletin of Mathematical Biology, 55(3): 655-674. https://doi.org/10.1007/BF02460655

Messner, S., Agarkova, I., Moritz, W. y Kelm, J. M. (2013). Multi-cell type human liver microtissues for hepatotoxicity testing. Archives of Toxicology, 87(1): 209-213. https://doi.org/10.1007/s00204-012-0968-2

Mikhail, A. S., Eetezadi, S. y Allen, C. (2013). Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere®. PloS One, 8(4): e62630. https://doi.org/10.1371/journal.pone.0062630

Nederman, T., Norling, B., Glimelius, B., Carlsson, J. y Brunk, U. (1984). Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Research, 44(7): 3090-3097. http://www.ncbi.nlm.nih.gov/pubmed/6373002

Pampaloni, F. y Stelzer, E. (2010). Three-dimensional cell cultures in toxicology. Biotechnology & Genetic Engineering Reviews, 26: 117-138. http://www.ncbi.nlm.nih.gov/pubmed/21415878

Pavlovich, E., Volkova, N., Yakymchuk, E., Perepelitsyna, O., Sydorenko, M. y Goltsev, A. (2017). In vitro study of influence of Au nanoparticles on HT29 and SPEV cell lines. Nanoscale Research Letters, 12. https://doi.org/10.1186/s11671-017-2264-9

Pellen-Mussi, P., Tricot-Doleux, S., Neaime, C., Nerambourg, N., Cabello-Hurtado, F., Cordier, S., … Jeanne, S. (2018). Evaluation of functional SiO2 nanoparticles toxicity by a 3D culture model. Journal of Nanoscience and Nanotechnology, 18(5): 3148-3157. https://doi.org/10.1166/jnn.2018.14619

Sambale, F., Lavrentieva, A., Stahl, F., Blume, C., Stiesch, M., Kasper, C., … Scheper, T. (2015). Three dimensional spheroid cell culture for nanoparticle safety testing. Journal of Biotechnology, 205, 120–129. https://doi.org/10.1016/j.jbiotec.2015.01.001

Sivaraman, A., Leach, J. K., Townsend, S., Iida, T., Hogan, B. J., Stolz, D. B., … Griffith, L. G. (2005). A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Current Drug Metabolism, 6(6): 569-591. http://www.ncbi.nlm.nih.gov/pubmed/16379670

Souza, W., Piperni, S. G., Laviola, P., Rossi, A. L., Rossi, M. I. D., Archanjo, B. S., … Ribeiro, A. R. (2019). The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids. Scientific Reports, 9(1): 9309. https://doi.org/10.1038/s41598-019-45797-6

Sutherland, R. M., McCredie, J. A. e Inch, W. R. (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. Journal of the National Cancer Institute, 46(1): 113-120. http://www.ncbi.nlm.nih.gov/pubmed/5101993

Tan, Y., Richards, D., Xu, R., Stewart-Clark, S., Mani, S. K., Borg, T. K., … Mei, Y. (2015). Silicon nanowire-induced maturation of cardiomyocytes derived from human induced pluripotent stem cells. Nano Letters, 15(5): 2765-2772. https://doi.org/10.1021/nl502227a

Tchoryk, A., Taresco, V., Argent, R. H., Ashford, M., Gellert, P. R., Stolnik, S., … Garnett, M. C. (2019). Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjugate Chemistry, 30(5): 1371-1384. https://doi.org/10.1021/acs.bioconjchem.9b00136

Verjans, E.-T., Doijen, J., Luyten, W., Landuyt, B. y Schoofs, L. (2018). Three-dimensional cell culture models for anticancer drug screening: Worth the effort? Journal of Cellular Physiology, 233(4): 2993-3003. https://doi.org/10.1002/jcp.26052

Vinci, M., Box, C. y Eccles, S. A. (2015). Three-dimensional (3D) tumor spheroid invasion assay. Journal of Visualized Experiments, 2015(99). https://doi.org/10.3791/52686

Weigelt, B., Ghajar, C. M. y Bissell, M. J. (2014 ). The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Advanced Drug Delivery Reviews, abril. https://doi.org/10.1016/j.addr.2014.01.001

Weiswald, L.-B., Bellet, D. y Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia, 17(1): 1-15. https://doi.org/10.1016/J.NEO.2014.12.004

Xia, X., Monteiro-riviere, N. A. y Riviere, J. E. (2010). An index for characterization of nanomaterials in biological systems. Nature Nanotechnology, 5(agosto): 671-675. https://doi.org/10.1038/nnano.2010.164

Yamaguchi, S., Kobayashi, H., Narita, T., Kanehira, K., Sonezaki, S., Kubota, Y., … Iwasaki, Y. (2010). Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound: evaluation of antitumor effect on glioma cells and spheroids in vitro. Photochemistry and Photobiology, 86(4): 964-971. https://doi.org/10.1111/j.1751-1097.2010.00742.x

Yang, C.-C., Tseng, P.-H., Low, M. C., Hua, W.-H., Yu, J.-H., He, Y., … Kiang, Y.-W. (2018). Evaluations of cell uptake capabilities of gold nanoparticle and photosensitizer in a cell spheroid, (Conferencia de presentación). En X.-J. Liang, W. J. Parak y M. Osiński (eds.), Colloidal nanoparticles for biomedical applications XIII (vol. 10507: 27). SPIE. https://doi.org/10.1117/12.2287592

Zhdanov, V. P. (2019). Formation of a protein corona around nanoparticles. Current Opinion in Colloid and Interface Science, junio 1. Elsevier Ltd. https://doi.org/10.1016/j.cocis.2018.12.002

Publicado
2020-07-02
Cómo citar
Juárez-Moreno, K., Angüis Delgado, K., Palestina Romero, B., & Vazquez Duhalt, R. (2020). Evaluando la toxicidad de nanomateriales en modelos celulares tridimensionales. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 13(25), 157-171. https://doi.org/10.22201/ceiich.24485691e.2020.25.69608