Aplicaciones de los nanodiamantes fluorescentes

Palabras clave: nanodiamantes, nanodiamantes fluorescentes, nanomateriales a base carbono, centros de color, vacancias

Resumen

Los nanodiamantes son partículas basadas en carbono cuyas características abren la oportunidad a una gran variedad de áreas de aplicación como transporte de fármacos, rastreo celular, biomarcadores celulares, etc. Las propiedades que presentan estas nanoestructuras permiten su uso en una amplia selección de industrias, gracias a la fluorescencia que producen. La fluorescencia de los nanodiamantes está relacionada con centros de color, originados en vacancias en el mismo. El objetivo de este trabajo es recopilar información documental sobre los nanodiamantes fluorescentes. Estas nanopartículas plantean diversos retos, tales como el tamaño de partícula, la formación de defectos cristalográficos funcionales en su núcleo, así como la homogeneidad de su superficie.

Citas

Alkahtani, Masfer H., Fahad Alghannam, Linkun Jiang, Abdulrahman Almethen, Arfaan A. Rampersaud, Robert Brick, Carmen L. Gomes, Marlan O. Scully y Philip R. Hemmer. (2018). Fluorescent nanodiamonds: past, present, and future. Nanophotonics, 7(8): 1423-1453. https://doi.org/10.1515/nanoph-2018-0025.

Alkahtani, Masfer H., Fahad Alghannam, Linkun Jiang, Arfaan A. Rampersaud, Robert Brick, Carmen L. Gomes, Marlan O. Scully y Philip R. Hemmer. (2018). Fluorescent nanodiamonds for luminescent thermometry in the biological transparency window. Optics Letters, 43(14): 3317-3320. https://doi.org/10.1364/OL.43.003317.

Aramesh, Morteza, Jiri Cervenka, Ann Roberts, Amir Djalalian-Assl, Ranjith Rajasekharan, Jinghua Fang, Kostya Ostrikov y Steven Prawer. (2014). Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire. Optics express, 22(13):15530-15541. https://doi.org/10.1364/OE.22.015530.

Arroyo-Camejo, Silvia, Marie-Pierre Adam, Mondher Besbes, Jean-Paul Hugonin, Vincent Jacques, Jean-Jacques Greffet, Jean-François Roch, Stefan W. Hell y François Treussart. (2013). Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano, 7(12): 10912-10919. https://doi.org/10.1021/nn404421b.

Badziag, P., W. S. Verwoerd, W. P. Ellis y N. R. Greiner. (1990). Nanometre-sized diamonds are more stable than graphite. Nature, 343(6255): 244-245.

Baidakova, M. V., Yu A. Kukushkina, A. A. Sitnikova, M. A. Yagovkina, D. A. Kirilenko, V. V. Sokolov, M. S. Shestakov, A. Ya Vul’, B. Zousman y O. Levinson. (2013). Structure of nanodiamonds prepared by laser synthesis. Physics of the Solid State, 55(8): 1747-1753. https://doi.org/10.1134/S1063783413080027.

Baidakova, Marina. (2007). New prospects and frontiers of nanodiamond clusters. Journal of Physics D: Applied Physics, 40(20): 6300. https://doi.org/10.1088/0022-3727/40/20/S14.

Barnard, A. S. (2018). Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. Nanoscale, 10(19): 8893-8910. https://doi.org/10.1039/C8NR01688G.

Basso, Luca, Massimo Cazzanelli, Michele Orlandi y Antonio Miotello. (2020). Nanodiamonds: synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Applied Sciences, 10(12): 4094.

Baştürk, Emre, Ferhat Şen y Memet Vezir Kahraman. (2018). Enhanced thermal and hydrophobic surface properties of shape-stabilized nanodiamond/fatty alcohol grafted poly(ethylene-alt-maleic anhydride) composite phase change materials. Polymer Composites, 39(6): 1887-1895. https://doi.org/10.1002/pc.24145.

Berdichevskiy, Gregory M., Lubov V. Vasina, Sergei V. Ageev, Anatolii A. Meshcheriakov, Mikhail A. Galkin, Robert R. Ishmukhametov, Alexei V. Nashchekin, Demid A. Kirilenko, Andrey V. Petrov, Sofia D. Martynova, Konstantin N. Semenov y Vladimir V. Sharoyko. (2021). A comprehensive study of biocompatibility of detonation nanodiamonds. Journal of Molecular Liquids, 332: 115763. https://doi.org/10.1016/j.molliq.2021.115763.

Bilal, Muhammad, Hairong Cheng, Reyna Berenice González-González, Roberto Parra-Saldívar y Hafiz M. N. Iqbal. 2021. Bio-applications and biotechnological applications of nanodiamonds. Journal of Materials Research and Technology, 15: 6175-6189. https://doi.org/10.1016/j.jmrt.2021.11.037.

Boudou, J. P., P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel y E. Gaffet. (2009). High yield fabrication of fluorescent nanodiamonds. Nanotechnology, 20(23): 235602. https://doi.org/10.1088/0957-4484/20/23/235602.

Boudou, Jean-Paul, Julia Tisler, Rolf Reuter, Alain Thorel, Patrick A. Curmi, Fedor Jelezko y Joerg Wrachtrup. (2013). Fluorescent nanodiamonds derived from HPHT with a size of less than 10nm. Diamond and Related Materials, 37: 80-86. https://doi.org/10.1016/j.diamond.2013.05.006.

Boudou, Jean-Paul, Marie-Odile David, Vandana Joshi, Housam Eidi y Patrick A. Curmi. (2013). Hyperbranched polyglycerol modified fluorescent nanodiamond for biomedical research. Diamond and Related Materials, 38: 131-138.

Bradac, Carlo, Torsten Gaebel, Nishen Naidoo, James R. Rabeau y Amanda S. Barnard. (2009). Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Letters, 9(10): 3555-3564. https://doi.org/10.1021/nl9017379.

Budama-Kilinc, Yasemin, Burak Ozdemir, Tolga Zorlu, Bahar Gok y Abdurrahim Can Egil. (2020). Chapter 2 - Nanobiomaterials for neural regenerative medicine. En Mehdi Razavi (ed.), Neural Regenerative Nanomedicine, 25-45. Academic Press.

Butler, James E. y Anirudha V. Sumant. (2008). The CVD of nanodiamond materials. Chemical Vapor Deposition, 14(7‐8): 145-160. https://doi.org/10.1002/cvde.200700037.

Claveau, S., J. R. Bertrand y F. Treussart. (2018). Fluorescent nanodiamond applications for cellular process sensing and cell tracking. Micromachines (Basel), 9(5). https://doi.org/10.3390/mi9050247.

Cuche, Aurélien, Yannick Sonnefraud, Orestis Faklaris, Damien Garrot, Jean-Paul Boudou, Thierry Sauvage, Jean-François Roch, François Treussart y Serge Huant. (2009). Diamond nanoparticles as photoluminescent nanoprobes for biology and near-field optics. Journal of Luminescence, 129(12): 1475-1477. https://doi.org/10.1016/j.jlumin.2009.04.089.

Chang, C., Y. Lin, Y. Lin, Z. Lin y C. Cheng. (2019). Nanodiamond as a fluorescent probe for image-guided application and toxicity evaluations in 2D- and 3D- cellular models. Journal of Biotechnology, 305: S25. https://doi.org/10.1016/j.jbiotec.2019.05.097.

Chang, Huan-Cheng, Wesley Wei-Wen Hsiao y Meng-Chih Su. (2018). Fluorescent nanodiamonds. John Wiley & Sons.

Chang, Y. R., H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang y W. Fann. (2008). Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol, 3(5): 284-8. https://doi.org/10.1038/nnano.2008.99.

Chauhan, Swati, Neha Jain y Upendra Nagaich. (2020). Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. Journal of Pharmaceutical Analysis, 10(1): 1-12. https://doi.org/10.1016/j.jpha.2019.09.003.

Chen, ChengKe, YingShuang Mei, JinMing Cui, Xiao Li, MeiYan Jiang, ShaoHua Lu y XiaoJun Hu. (2018). Man-made synthesis of ultrafine photoluminescent nanodiamonds containing less than three silicon-vacancy colour centres. Carbon, 139: 982-988. https://doi.org/10.1016/j.carbon.2018.08.013.

Chen, Mark, Erik D. Pierstorff, Robert Lam, Shu-You Li, Houjin Huang, Eiji Osawa y Dean Ho. (2009). Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano, 3(7): 2016-2022. https://doi.org/10.1021/nn900480m.

Chen, Mark, Xue-Qing Zhang, Han B. Man, Robert Lam, Edward K. Chow y Dean Ho. (2010). Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. The Journal of Physical Chemistry Letters, 1(21): 3167-3171. https://doi.org/10.1021/jz1013278.

Chen, Zhe, Yuhong Liu y Jianbin Luo. (2016). Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489: 400-406. https://doi.org/10.1016/j.colsurfa.2015.10.062.

Cheng, Liang-Chien, Hao Ming Chen, Tsung-Ching Lai, Yung-Chieh Chan, Ru-Shi Liu, James C. Sung, Michael Hsiao, Chung-Hsuan Chen, Li-Jane Her y Din Ping Tsai. (2013). Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale, 5(9): 3931-3940. https://doi.org/10.1039/C3NR34091K.

Chipaux, M., K. J. van der Laan, S. R. Hemelaar, M. Hasani, T. Zheng y R. Schirhagl. (2018). Nanodiamonds and their applications in cells. Small, 14(24): e1704263. https://doi.org/10.1002/smll.201704263.

Chou, Chau-Chang y Szu-Hsien Lee. (2010). Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear, 269(11): 757-762. https://doi.org/10.1016/j.wear.2010.08.001.

Chow, Edward K., Xue-Qing Zhang, Mark Chen, Robert Lam, Erik Robinson, Houjin Huang, Daniel Schaffer, Eiji Osawa, Andrei Goga y Dean Ho. (2011). Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Science translational medicine, 3(73): 73ra21-73ra21.

Chung, P. H., E. Perevedentseva y C. L. Cheng. (2007). The particle size-dependent photoluminescence of nanodiamonds. Surface Science, 601(18): 3866-3870. https://doi.org/10.1016/j.susc.2007.04.150.

Danilenko, Vycheslav y Olga A Shenderova. (2012). Advances in synthesis of nanodiamond particles. Ultrananocrystalline diamond: synthesis, properties and applications, 2a ed., 133-164.

Davidson, J. L. y W. P. Kang. (2005). Applying CVD diamond and particulate nanodiamond. In Synthesis, Properties and Applications of Ultrananocrystalline Diamond, 357-372. Springer.

Day, Adam H., Samuel J. Adams, Laia Gines, Oliver A. Williams, Benjamin R. G. Johnson, Ian A. Fallis, E. Joel Loveridge, Gurmit S. Bahra, Petra C. F. Oyston, Juan Manuel Herrera y Simon J. A. Pope. (2019). Synthetic routes, characterization and photophysical properties of luminescent, surface functionalized nanodiamonds. Carbon, 152: 335-343. https://doi.org/10.1016/j.carbon.2019.05.081.

Decarli, P. S. y J. C. Jamieson. (1961). Formation of diamond by explosive shock. Science, 133(3467): 1821-2. https://doi.org/10.1126/science.133.3467.1821.

Dhanak, V. R., Y. V. Butenko, A. C. Brieva, P. R. Coxon, L. Alves y L. Siller. (2012). Chemical functionalization of nanodiamond by amino groups: an X-ray photoelectron spectroscopy study. J Nanosci Nanotechnol, 12(4): 3084-90. https://doi.org/10.1166/jnn.2012.4547.

Ding, Ruyue, Hong Lei, Lei Xu y Yi Chen. (2022). Surface planarization of zirconia ceramic achieved by polyacrylamide grafted nanodiamond composite abrasives through chemical mechanical polishing. Ceramics International. https://doi.org/10.1016/j.ceramint.2022.03.265.

Ditalia Tchernij, Sviatoslav, Emilio Corte, Tobias Lühmann, Paolo Traina, Sébastien Pezzagna, Ivo Pietro Degiovanni, Georgios Provatas, Ekaterina Moreva, Jan Meijer, Paolo Olivero, Marco Genovese y Jacopo Forneris. (2021). Spectral features of Pb-related color centers in diamond – a systematic photoluminescence characterization. New Journal of Physics, 23(6): 063032. https://doi.org/10.1088/1367-2630/ac038a.

Dolmatov, Valerii Y. (2017). Chapter 15 - Detonation nanodiamonds in oils and lubricants. En Jean-Charles Arnault (ed.), Nanodiamonds, 391-402. Elsevier.

Dolmatov, Valerii Yu. (2007). Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russian Chemical Reviews, 76(4): 339. https://doi.org/10.1070/RC2007v076n04ABEH003643.

Dong, Jiande, Ruming Jiang, Hongye Huang, Junyu Chen, Jianwen Tian, Fengjie Deng, Yanfeng Dai, Yuanqing Wen, Xiaoyong Zhang y Yen Wei. (2020). Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. Materials Science and Engineering: C, 106: 110297.

Duan, Xiaoguang, Zhimin Ao, Degang Li, Hongqi Sun, Li Zhou, Alexandra Suvorova, Martin Saunders, Guoxiu Wang y Shaobin Wang. (2016). Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon, 103: 404-411. https://doi.org/10.1016/j.carbon.2016.03.034.

Eidi, H., M. O. David, G. Crepeaux, L. Henry, V. Joshi, M. H. Berger, M. Sennour, J. Cadusseau, R. K. Gherardi y P. A. Curmi. (2015). Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition. BMC Med, 13: 144. https://doi.org/10.1186/s12916-015-0388-2.

Ekimov, E. A. y M. V. Kondrin. (2020). Chapter six - High-pressure, high-temperature synthesis and doping of nanodiamonds. En Christoph E. Nebel, Igor Aharonovich, Norikazu Mizuochi y Mutsuko Hatano (eds.), Semiconductors and semimetals, 161-199. Elsevier.

Faklaris, Orestis, Jacques Botsoa, Thierry Sauvage, Jean-François Roch y François Treussart. (2010). Photoluminescent nanodiamonds: Comparison of the photoluminescence saturation properties of the NV color center and a cyanine dye at the single emitter level, and study of the color center concentration under different preparation conditions. Diamond and Related Materials, 19(7): 988-995. https://doi.org/10.1016/j.diamond.2010.03.002.

Fang, XiaoWen, JingDong Mao, E. M. Levin y Klaus Schmidt-Rohr. (2009). Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy. Journal of the American Chemical Society, 131(4): 1426-1435. https://doi.org/10.1021/ja8054063.

Ferrari, Andrea Carlo y John Robertson. (2004). Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1824): 2477-2512.

Ferraris, C., C. Rimicci, S. Garelli, E. Ugazio y L. Battaglia. (2021). Nanosystems in cosmetic products: a brief overview of functional, market, regulatory and safety concerns. Pharmaceutics, 13(9). https://doi.org/10.3390/pharmaceutics13091408.

Fox, Kate, Phong A. Tran, Desmond W. M. Lau, Takeshi Ohshima, Andrew D. Greentree y Brant C. Gibson. (2016). Nanodiamond-polycaprolactone composite: A new material for tissue engineering with sub-dermal imaging capabilities. Materials Letters, 185: 185-188. https://doi.org/10.1016/j.matlet.2016.08.140.

Fu, C. C., Lee, H-Y. Chen, K., Lim, T.-S. Wu, H-Y., Lin, P.-K., Wei, P. K., Tsao, P. H., Chang, H.-C., Fann, W. (2007). Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. PNAS, 104(3): 727-732. https://doi.org/10.1073/pnas.0605409104.

Gaebel, T., C. Bradac, J. Chen, J. M. Say, L. Brown, P. Hemmer y J. R. Rabeau. 2012. Size-reduction of nanodiamonds via air oxidation. Diamond and Related Materials, 21: 28-32. https://doi.org/10.1016/j.diamond.2011.09.002.

Ghadimi, A., R. Saidur y H. S. C. Metselaar. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54(17): 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014.

Głowacki, Maciej J., Mateusz Ficek, Mirosław Sawczak, Anna Wcisło y Robert Bogdanowicz. (2022). Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids. Food Chemistry, 381: 132206. https://doi.org/10.1016/j.foodchem.2022.132206.

Gvozdev, D. A., А. А. Ramonova, Y. B. Slonimskiy, V. R. Gudkova, E. I. Nikelshparg, A. М. Moisenovich, М. М. Moisenovich, A. V. Zaitsev, V. A. Olshevskaya, V. Z. Paschenko y Е. G. Maksimov. (2021). Nanodiamonds as a platform for targeted delivery of chlorin-based photosensitizers to cancer cells. Diamond and Related Materials, 120: 108676. https://doi.org/10.1016/j.diamond.2021.108676.

Hasan, Zameer U., Philip R. Hemmer, Hwang Lee, Alan L. Migdall, Olga Shenderova, Nicholas Nunn, Thomas Oeckinghaus, Marco Torelli, Gary McGuire, Kevin Smith, Evgeny Danilov, Rolf Reuter, Joerg Wrachtrup, Alexander Shames, Daria Filonova y Alexander Kinev. (2017). Commercial quantities of ultrasmall fluorescent nanodiamonds containing color centers. Advances in Photonics of Quantum Computing, Memory, and Communication X.

Havlik, J., V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendler, S. Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek y P. Cigler. (2013). Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale, 5(8): 3208-11. https://doi.org/10.1039/c2nr32778c.

Havlik, Jan, Helena Raabova, Michal Gulka, Vladimira Petrakova, Marie Krecmarova, Vlastimil Masek, Petr Lousa, Jan Stursa, Hans‐Gerd Boyen y Milos Nesladek. (2016). Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Advanced Functional Materials, 26(23): 4134-4142.

Haziza, S., N. Mohan, Y. Loe-Mie, A. M. Lepagnol-Bestel, S. Massou, M. P. Adam, X. L. Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F. J. Hsieh, C. C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H. C. Chang, F. Treussart y M. Simonneau. (2017). Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat Nanotechnol, 12(4): 322-328. https://doi.org/10.1038/nnano.2016.260.

Hegyi, Alex y Eli Yablonovitch. (2013). Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano letters, 13(3): 1173-1178. https://doi.org/10.1021/nl304570b.

Hemelaar, S. R., P. de Boer, M. Chipaux, W. Zuidema, T. Hamoh, F. P. Martinez, A. Nagl, J. P. Hoogenboom, B. N. G. Giepmans y R. Schirhagl. (2017). Nanodiamonds as multi-purpose labels for microscopy. Sci Rep, 7(1): 720. https://doi.org/10.1038/s41598-017-00797-2.

Hill, H. G. M., L. B. D’Hendecourt, C. Perron y A. P. Jones. 1997. Infrared spectroscopy of interstellar nanodiamonds from the Orgueil meteorite. Meteoritics & Planetary Science, 32(5): 713-718. https://doi.org/10.1111/j.1945-5100.1997.tb01556.x.

Houshyar, Shadi, Avik Sarker, Amit Jadhav, G. Sathish Kumar, Amitava Bhattacharyya, Rajkishore Nayak, Robert A. Shanks, Tanushree Saha, Aaqil Rifai, Rajiv Padhye y Kate Fox. (2020). Polypropylene-nanodiamond composite for hernia mesh. Materials Science and Engineering: C, 111: 110780. https://doi.org/10.1016/j.msec.2020.110780.

Hu, Guang Qiu, Jing Lu y Xi Peng Xu. (2012). Polishing silicon wafers with the nanodiamond abrasive tools prepared by sol-gel technique. Key Engineering Materials, 496: 1-6. https://doi.org/10.4028/www.scientific.net/KEM.496.1.

Hu, Shengliang, Fei Tian, Peikang Bai, Shirui Cao, Jing Sun y Jing Yang. (2009). Synthesis and luminescence of nanodiamonds from carbon black. Materials Science and Engineering: B, 157(1): 11-14. https://doi.org/10.1016/j.mseb.2008.12.001.

Huang, Hongye, Meiying Liu, Ruming Jiang, Junyu Chen, Qiang Huang, Yuanqing Wen, Jianwen Tian, Naigen Zhou, Xiaoyong Zhang y Yen Wei. (2019). Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry. Journal of the Taiwan Institute of Chemical Engineers, 95: 481-486. https://doi.org/10.1016/j.jtice.2018.08.035.

Huang, Houjin, Erik Pierstorff, Eiji Osawa y Dean Ho. (2007). Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Letters, 7(11): 3305-3314. https://doi.org/10.1021/nl071521o.

Huang, Zhongping, Peng Yao, Qiulian Zhu, Lili Wang y Yan Zhu. (2018). The polystyrene-divinylbenzene stationary phase hybridized with oxidized nanodiamonds for liquid chromatography. Talanta, 185: 221-228. https://doi.org/10.1016/j.talanta.2018.03.076.

Hui, Yuen Yung, Wesley Wei-Wen Hsiao, Simon Haziza, Michel Simonneau, François Treussart y Huan-Cheng Chang. (2017). Single particle tracking of fluorescent nanodiamonds in cells and organisms. Current Opinion in Solid State and Materials Science, 21(1): 35-42. https://doi.org/10.1016/j.cossms.2016.04.002.

Igarashi, R., Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada y M. Shirakawa. (2012). Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett, 12(11): 5726-32. https://doi.org/10.1021/nl302979d.

Ikliptikawati, Dini Kurnia, Masaharu Hazawa, Frederick T. K. So, Daiki Terada, Akiko Kobayashi, Takuya F. Segawa, Masahiro Shirakawa y Richard W. Wong. (2021). Label-free tomographic imaging of nanodiamonds in living cells. Diamond and Related Materials, 118: 108517. https://doi.org/10.1016/j.diamond.2021.108517.

Jariwala, Dhruvil Hiteshkumar, Dhrumi Patel y Sarika Wairkar. (2020). Surface functionalization of nanodiamonds for biomedical applications. Materials Science and Engineering: C, 113: 110996. https://doi.org/10.1016/j.msec.2020.110996.

Jing, Xufeng, Yayan Xu, Haiyong Gan, Ping Hu, Chenxia Li, Jianqiang Qian, Junjie Zhang, Ying Tian y Shiqing Xu. (2021). Synthesis and fluorescent thermal response of sol-gel SiO2 composite film containing nanodiamonds. Carbon, 184: 303-311. https://doi.org/10.1016/j.carbon.2021.08.038.

Johnstone, Graeme E., Gemma S. Cairns y Brian R. Patton. (2019). Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. Royal Society Open Science, 6(7): 190589. https://doi.org/10.1098/rsos.190589.

Jung, Haksung, Kyung-Jin Cho, Yeonee Seol, Yasuharu Takagi, Andrew Dittmore, Roche Paul y Keir C. Neuman. (2019). Surface modification of fluorescent nanodiamond for biomedical applications as fluorescent probe. Biophysical Journal, 116(3, Supplement 1): 445a. https://doi.org/10.1016/j.bpj.2018.11.2396.

Kang, Rae-Hyung, Seung Woon Baek, Tae-Kyung Ryu y Sung-Wook Choi. (2018). Fabrication of blue-fluorescent nanodiamonds modified with alkyl isocyanate for cellular bioimaging. Colloids and Surfaces B: Biointerfaces, 167: 191-196. https://doi.org/10.1016/j.colsurfb.2018.04.014.

Karami, Pooria, Sadegh Aghapour Aktij, Behnam Khorshidi, Mostafa Dadashi Firouzjaei, Asad Asad, Mark Elliott, Ahmad Rahimpour, João B. P. Soares y Mohtada Sadrzadeh. (2022). Nanodiamond-decorated thin film composite membranes with antifouling and antibacterial properties. Desalination, 522: 115436. https://doi.org/10.1016/j.desal.2021.115436.

Karaveli, Sinan, Ophir Gaathon, Abraham Wolcott, Reyu Sakakibara, Or A. Shemesh, Darcy S. Peterka, Edward S. Boyden, Jonathan S. Owen, Rafael Yuste y Dirk Englund. (2016). Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential. Proceedings of the National Academy of Sciences, 113(15): 3938-3943. https://doi.org/10.1073/pnas.1504451113.

Karpeta-Kaczmarek, Julia, Andrzej Kędziorski, Maria A. Augustyniak-Jabłokow, Marta Dziewięcka y Maria Augustyniak. (2018). Chronic toxicity of nanodiamonds can disturb development and reproduction of Acheta domesticus L. Environmental Research, 166: 602-609. https://doi.org/10.1016/j.envres.2018.05.027.

Kausar, Ayesha. (2015). Polyaniline composites with nanodiamond, carbon nanotube and silver nanoparticle: Preparation and properties. American Journal of Polymer Science & Engineering, 3(2): 149-160. https://doi.org/10.5923/j.fs.20170702.02.

Kavirajan, Harish. (2009). Memantine: a comprehensive review of safety and efficacy. Expert opinion on drug safety, 8(1): 89-109. https://doi.org/0.1517/147403308025 28420.

Kharisov, Boris I., Oxana V. Kharissova y Leonardo Chávez-Guerrero. (2010). Synthesis techniques, properties, and applications of nanodiamonds. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(2): 84-101. https://doi.org/10.3109/10799890903555665.

Kim, Hyun-Soo, Jin-Whak Park, Se-Min Park, Jung-Suk Lee y Young-Ze Lee. (2013). Tribological characteristics of paraffin liquid with nanodiamond based on the scuffing life and wear amount. Wear, 301(1): 763-767. https://doi.org/10.1016/j.wear.2013.01.055.

Kim, Min-Chul, Dukhee Lee, Seong Hoon Jeong, Sang-Yup Lee y Eunah Kang. (2016). Nanodiamond–gold nanocomposites with the peroxidase-like oxidative catalytic activity. ACS applied materials & interfaces, 8(50): 34317-34326. https://doi.org/10.1021/acsami.6b10471.

Korobov, Mikhail V., Dmitry S. Volkov, Natalya V. Avramenko, Lubov’ A. Belyaeva, Pavel I. Semenyuk y Mikhail A. Proskurnin. (2013). Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders. Nanoscale, 5(4): 1529-1536. https://doi.org/10.1039/C2NR33512C.

Krueger, Anke, Jochen Stegk, Yuejiang Liang, Li Lu y Gerald Jarre. (2008). Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 24(8): 4200-4204. https://doi.org/10.1021/la703482v.

Krueger, Anke. (2008). Diamond nanoparticles: jewels for chemistry and physics. Advanced Materials, 20(12): 2445-2449. https://doi.org/10.1002/adma.200701856.

Krueger, Anke. (2017). Chapter 8 - Current issues and challenges in surface chemistry of nanodiamonds. En Jean-Charles Arnault (ed.), Nanodiamonds, 183-242. Elsevier.

Kuo, Yung, Tsung-Yuan Hsu, Yi-Chun Wu y Huan-Cheng Chang. (2013). Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials, 34(33): 8352-8360. https://doi.org/10.1016/j.biomaterials.2013.07.043.

Laube, C., T. Oeckinghaus, J. Lehnert, J. Griebel, W. Knolle, A. Denisenko, A. Kahnt, J. Meijer, J. Wrachtrup y B. Abel. (2019). Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale, 11(4): 1770-1783. https://doi.org/10.1039/c8nr07828a.

Lee, Gyoung-Ja, Jin-Ju Park, Min-Ku Lee y Chang Kyu Rhee. (2017). Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Applied Surface Science, 415: 24-27. https://doi.org/10.1016/j.apsusc.2016.12.109.

Lee, Jung-Yeob y Dae-Soon Lim. (2004). Tribological behavior of PTFE film with nanodiamond. Surface and Coatings Technology, 188-189: 534-538. https://doi.org/10.1016/j.surfcoat.2004.07.102.

Liang, Jiaxu, Christopher P. Ender, Todd Zapata, Anna Ermakova, Manfred Wagner y Tanja Weil. (2020). Germanium iodide mediated synthesis of nanodiamonds from adamantane “seeds” under moderate high-pressure high-temperature conditions. Diamond and Related Materials, 108: 108000. https://doi.org/10.1016/j.diamond.2020.108000.

Lien, Zhi-Yi, Tzu-Chia Hsu, Kuang-Kai Liu, Wei-Siang Liao, Kuo-Chu Hwang y Jui- I. Chao. (2012). Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond. Biomaterials, 33(26): 6172-6185. https://doi.org/10.1016/j.biomaterials.2012.05.009.

Liu, Juan, Penglu Wang, Wenqiang Qu, Hongrui Li, Liyi Shi y Dengsong Zhang. (2019). Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Applied Catalysis B: Environmental, 257: 117880. https://doi.org/10.1016/j.apcatb.2019.117880.

Liu, W., B. Naydenov, S. Chakrabortty, B. Wuensch, K. Hubner, S. Ritz, H. Colfen, H. Barth, K. Koynov, H. Qi, R. Leiter, R. Reuter, J. Wrachtrup, F. Boldt, J. Scheuer, U. Kaiser, M. Sison, T. Lasser, P. Tinnefeld, F. Jelezko, P. Walther, Y. Wu y T. Weil. (2016). Fluorescent nanodiamond-gold hybrid particles for multimodal optical and electron microscopy cellular imaging. Nano Lett, 16(10): 6236-6244. https://doi.org/10.1021/acs.nanolett.6b02456.

Liu, Weina, Md Noor A. Alam, Yan Liu, Viatcheslav N. Agafonov, Haoyuan Qi, Kaloian Koynov, Valery A. Davydov, Rustem Uzbekov, Ute Kaiser, Theo Lasser, Fedor Jelezko, Anna Ermakova y Tanja Weil. (2022). Silicon-vacancy nanodiamonds as high performance near-infrared emitters for live-cell dual-color imaging and thermometry. Nano Letters, 22(7): 2881-2888. https://doi.org/10.1021/acs.nanolett.2c00040.

Liu, Xiangcheng, Qing Wan, Zhe Zhao, Jinglong Liu, Zhuoyong Zhang, Fengjie Deng, Meiying Liu, Yuanqing Wen y Xiaoyong Zhang. (2017). Microwave-assisted Diels-Alder reaction for rapid synthesis of luminescent nanodiamond with AIE-active dyes and their biomedical applications. Materials Chemistry and Physics, 197: 256-265. https://doi.org/10.1016/j.matchemphys.2017.05.041.

Loganathan, Archana, Sara Rengifo, Alexander Franco Hernandez, Cheng Zhang y Arvind Agarwal. (2021). Effect of nanodiamond reinforcement and heat-treatment on microstructure, mechanical and tribological properties of cold sprayed aluminum coating. Surface and Coatings Technology, 412: 127037. https://doi.org/10.1016/j.surfcoat.2021.127037.

Ma, Mengdi, Pei Guan, Jean Felix Mukerabigwi, Faning Yan, Didi Chen, Yuyang Sun, Xueying Huang y Yu Cao. (2021). Nanodiamond conjugated fluorescein through ethylenediamine linker for cellular biomarking. Diamond and Related Materials 118: 108546. https://doi.org/10.1016/j.diamond.2021.108546.

Makarova, Irina, Illia Dobryden, Dmitry Kharitonov, Aliaksandr Kasach, Jacek Ryl, Eveliina Repo y Esa Vuorinen. (2019). Nickel-nanodiamond coatings electrodeposited from tartrate electrolyte at ambient temperature. Surface and Coatings Technology, 380: 125063. https://doi.org/10.1016/j.surfcoat.2019.125063.

Man, Han B., Kangyi Zhang, Erik Robinson, Edward K. Chow y Dean Ho. (2012). Engineering nanoparticulate diamond for applications in nanomedicine and biology. En Ultananocrystalline Diamond, 493-518. Elsevier.

Marcucci Pico, David Fernando, Leonardo Ribeiro Rosa da Silva, Paulo Smith Schneider y Enio Pedone Bandarra Filho. (2019). Performance evaluation of diamond nanolubricants applied to a refrigeration system. International Journal of Refrigeration, 100: 104-112. https://doi.org/10.1016/j.ijrefrig.2018.12.009.

Marcucci Pico, David Fernando, Leonardo Rosa Ribeiro da Silva, Oscar Saul Hernandez Mendoza y Enio Pedone Bandarra Filho. (2020). Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. International Journal of Heat and Mass Transfer, 152: 119493. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119493.

Martel-Estrada, Santos-Adriana, Claudia-Lucía Vargas-Requena, Dulce-Azucena Salazar-Vázquez, José-Emmanuel Sánchez-Serrano, Karen-Andrea Legarreta-Arias, Imelda Olivas-Armendáriz, Carlos-Alberto Martínez-Pérez y Laura-Elizabeth Valencia-Gómez. (2021). Physico-chemical and cytotoxic properties of capsules of nanodiamonds/extract of Mimosa Tenuiflora bark with chitosan in MDA-MB-231. International Journal of Nano and Biomaterials, 10(1): 1-21. https://doi.org/10.1504/IJNBM.2021.114684.

Mashali, Farzin, Ethan Languri, Gholamreza Mirshekari, Jim Davidson y David Kerns. (2019). Nanodiamond nanofluid microstructural and thermo-electrical characterization. International Communications in Heat and Mass Transfer, 101: 82-88. https://doi.org/10.1016/j.icheatmasstransfer.2019.01.007.

Maze, J. R., P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth y M. D. Lukin. (2008). Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 455(7213): 644-647. https://doi.org/10.1038/nature07279.

Medina-Cruz, David, Bahram Saleh, Ada Vernet-Crua, Alessandro Ajo, Amit K. Roy y Thomas J. Webster. (2020). Chapter 22 - Drug-delivery nanocarriers for skin wound-healing applications. En Debasis Bagchi, Amitava Das and Sashwati Roy (eds.), Wound healing, tissue repair, and regeneration in diabetes, 439-488. Academic Press.

Mikheev, Konstantin G., Tatyana N. Mogileva, Arseniy E. Fateev, Nicholas A. Nunn, Olga A. Shenderova y Gennady M. Mikheev. (2020). Low-power laser graphitization of high pressure—high temperature nanodiamond films. Applied Sciences, 10(9). https://doi.org/10.3390/app10093329.

Mironova, E. Yu, A. A. Lytkina, M. M. Ermilova, M. N. Efimov, L. M. Zemtsov, N. V. Orekhova, G. P. Karpacheva, G. N. Bondarenko, D. N. Muraviev y A. B. Yaroslavtsev. (2015). Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production. International Journal of Hydrogen Energy, 40(8): 3557-3565. https://doi.org/10.1016/j.ijhydene.2014.11.082.

Mirzaamiri, Rouhollah, Saleh Akbarzadeh, Saeed Ziaei-Rad, Dong-Gap Shin y Dae-Eun Kim. (2021). Molecular dynamics simulation and experimental investigation of tribological behavior of nanodiamonds in aqueous suspensions. Tribology International, 156: 106838. https://doi.org/10.1016/j.triboint.2020.106838.

Mochalin, Vadym N., Olga Shenderova, Dean Ho y Yury Gogotsi. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology, 7(1): 11-23. https://doi.org/10.1038/nnano.2011.209.

Mochalin, Vadym, Sebastian Osswald y Yury Gogotsi. (2009). Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chemistry of Materials, 21(2): 273-279. https://doi.org/10.1021/cm802057q.

Mohammadkhani, Rahman, Akbar Shojaei, Pooria Rahmani, Nahid Pirhady Tavandashti y Mahsa Amouzegar. (2021). Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating. Diamond and Related Materials, 120: 108672. https://doi.org/10.1016/j.diamond.2021.108672.

Mona, J., J. S. Tu, T. Y. Kang, Cheng-Yen Tsai, E. Perevedentseva y C. L. Cheng. (2012). Surface modification of nanodiamond: photoluminescence and Raman studies. Diamond and Related Materials, 24: 134-138. https://doi.org/10.1016/j.diamond.2011.12.027.

Mortet, V., J. D’Haen, J. Potmesil, R. Kravets, I. Drbohlav, V. Vorlicek, J. Rosa y M. Vanecek. (2005). Thin nanodiamond membranes and their microstructural, optical and photoelectrical properties. Diamond and Related Materials, 14(3): 393-397. https://doi.org/10.1016/j.diamond.2004.12.057.

Muruganathan, Manoharan y Hiroshi Mizuta. (2021). Boron vacancy color center in diamond: Ab initio study. Diamond and Related Materials, 114: 108341. https://doi.org/10.1016/j.diamond.2021.108341.

Nagl, A., S. R. Hemelaar y R. Schirhagl. (2015). Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes — A review. Anal Bioanal Chem, 407(25): 7521-36. https://doi.org/10.1007/s00216-015-8849-1.

Neitzel, I., V. Mochalin, I. Knoke, G. R. Palmese y Y. Gogotsi. (2011). Mechanical properties of epoxy composites with high contents of nanodiamond. Composites Science and Technology, 71(5): 710-716. https://doi.org/10.1016/j.compscitech.2011.01.016.

Nèmeth, Pèter, Laurence Garvie, and Peter Buseck. (2016). Twinning of cubic diamond explains reported nanodiamond polymorphs. Scientific Reports, 5. https://doi.org/10.1038/srep18381.

Nesterenko, P. N., O. N. Fedyanina, Y. V. Volgin y P. Jones. (2007). Ion chromatographic investigation of the ion-exchange properties of microdisperse sintered nanodiamonds. J Chromatogr A, 1155(1): 2-7. https://doi.org/10.1016/j.chroma.2007.02.019.

Neu, E., C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger y C. Becher. (2011). Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Applied Physics Letters, 98(24). https://doi.org/10.1063/1.3599608.

Neu, Elke. (2017). Chapter 17 - Applications of color centers as nanoscopic sensors. En Jean-Charles Arnault (ed.), Nanodiamonds, 419-438. Elsevier.

Neverovskaya, A. Yu, A. P. Voznyakovskii y V. Yu Dolmatov. (2004). Structure of the dispersive medium and sedimentation resistance of suspensions of detonation nanodiamonds. Physics of the Solid State, 46(4): 662-664.

Nezamdoust, S., D. Seifzadeh y A. Habibi-Yangjeh. (2020). Nanodiamond incorporated sol−gel coating for corrosion protection of magnesium alloy. Transactions of Nonferrous Metals Society of China, 30(6): 1535-1549. https://doi.org/10.1016/S1003-6326(20)65317-1.

Noguez, Cecilia y Ignacio L. Garzón. (2009). Optically active metal nanoparticles. Chemical Society Reviews, 38(3): 757-771. https://doi.org/10.1039/B800404H.

Norouzi, Neda, Yori Ong, Viraj G. Damle, Mohammad B. Habibi Najafi y Romana Schirhagl. (2020). Effect of medium and aggregation on antibacterial activity of nanodiamonds. Materials Science and Engineering: C, 112: 110930. https://doi.org/10.1016/j.msec.2020.110930.

Nunn, Nicholas, Marco Torelli, Gary McGuire Olga Shenderova. (2017). Nanodiamond: a high impact nanomaterial. Current Opinion in Solid State and Materials Science, 21(1): 1-9. https://doi.org/10.1016/j.cossms.2016.06.008.

Osipov, Vladimir Yu, Nikolai M. Romanov y Kazuyuki Takai. (2021). Irradiation of detonation nanodiamonds with γ-rays does not produce long living spin radicals. Mendeleev Communications, 31(2): 227-229. https://doi.org/10.1016/j.mencom.2021.03.027.

Osswald, S., V. N. Mochalin, M. Havel, G. Yushin y Y. Gogotsi. (2009). Phonon confinement effects in the Raman spectrum of nanodiamond. Physical Review B, 80(7): 075419. https://doi.org/10.1103/PhysRevB.80.075419.

Parker, David M., Alex J. Lineweaver, Arthur D. Quast, Ilya Zharov y Jennifer S. Shumaker-Parry. (2021). Thiol-terminated nanodiamond powders for support of gold nanoparticle catalysts. Diamond and Related Materials, 116: 108449. https://doi.org/10.1016/j.diamond.2021.108449.

Passeri, D., A. Biagioni, M. Rossi, E. Tamburri y M. L. Terranova. (2013). Characterization of polyaniline–detonation nanodiamond nanocomposite fibers by atomic force microscopy based techniques. European Polymer JournalI, 49(5): 991-998. https://doi.org/10.1016/j.eurpolymj.2013.02.003.

Perevedentseva, E., Lin, Y.C., Jani, M., Cheng, C. L. (2013). Biomedical applications of nanodiamonds in imaging and therapy. Future Medicine Ltd, 8(12): 2041-2060. https://doi.org/10.2217/nnm.13.183.

Perevedentseva, E., N. Ali, A. Karmenyan, I. Skovorodkin, R. Prunskaite-Hyyryläinen, S. Vainio, C. L. Cheng y M. Kinnunen. (2019). Optical studies of nanodiamond-tissue interaction: skin penetration and localization. Materials (Basel), 12(22). https://doi.org/10.3390/ma12223762.

Perevedentseva, Elena, Yu-Chung Lin y Chia-Liang Cheng. (2021). A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opinion on Drug Delivery, 18(3): 369-382.

Peristyy, Anton A., Olga N. Fedyanina, Brett Paull y Pavel N. Nesterenko. (2014). Diamond based adsorbents and their application in chromatography. Journal of Chromatography A, 1357: 68-86. https://doi.org/10.1016/j.chroma.2014.06.044.

Petit, Tristan y Ljiljana Puskar. (2018). FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond and Related Materials, 89: 52-66. https://doi.org/10.1016/j.diamond.2018.08.005.

Petrakova, V., I. Rehor, J. Stursa, M. Ledvina, M. Nesladek y P. Cigler. (2015). Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale, 7(29): 12307-12311. https://doi.org/10.1039/C5NR00712G.

Prabhakar, Neeraj y Jessica M. Rosenholm. (2019). Nanodiamonds for advanced optical bioimaging and beyond. Current Opinion in Colloid & Interface Science, 39: 220-231. https://doi.org/10.1016/j.cocis.2019.02.014.

Preston, G. D. (1945). Structure of diamond. Nature, 155(3925): 69-70. https://doi.org/10.1038/155069a0.

Qin, Jin-Xu, Xi-Gui Yang, Chao-Fan Lv, Yi-Zhe Li, Kai-Kai Liu, Jin-Hao Zang, Xun Yang, Lin Dong y Chong-Xin Shan. (2021). Nanodiamonds: synthesis, properties, and applications in nanomedicine. Materials & Design, 210: 110091. https://doi.org/10.1016/j.matdes.2021.110091.

Raj, Ashlin M. y Balachandran Manoj. (2022). Cost-effective route to nanodiamonds from low-rank coal and their fluorescent & dielectric characteristics. Ceramics International, 48(1): 887-895. https://doi.org/10.1016/j.ceramint.2021.09.171.

Rehman, Aisha, Shadi Houshyar y Xin Wang. (2020). Nanodiamond in composite: Biomedical application. Journal of Biomedical Materials Research Part A, 108(4): 906-922. https://doi.org/10.1002/jbm.a.36868.

Rehor, I., H. Mackova, S. K. Filippov, J. Kucka, V. Proks, J. Slegerova, S. Turner, G. Van Tendeloo, M. Ledvina, M. Hruby y P. Cigler. 2014. Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. Chempluschem, 79(1): 21-24. https://doi.org/10.1002/cplu.201300339.

Rehor, I., J. Slegerova, J. Kucka, V. Proks, V. Petrakova, M. P. Adam, F. Treussart, S. Turner, S. Bals, P. Sacha, M. Ledvina, A. M. Wen, N. F. Steinmetz y P. Cigler. (2014). Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small, 10(6): 1106-15. https://doi.org/10.1002/smll.201302336.

Reina, Giacomo, Li Zhao, Alberto Bianco y Naoki Komatsu. (2019). Chemical functionalization of nanodiamonds: opportunities and challenges ahead. Angewandte Chemie International Edition, 58(50): 17918-17929. https://doi.org/10.1002/anie.201905997.

Reineck, P., D. W. M. Lau, E. R. Wilson, K. Fox, M. R. Field, C. Deeleepojananan, V. N. Mochalin y B. C. Gibson. (2017). Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano, 11(11): 10924-10934. https://doi.org/10.1021/acsnano.7b04647.

Reineck, Philipp, Leevan Fremiot Trindade, Jan Havlik, Jan Stursa, Ashleigh Heffernan, Aaron Elbourne, Antony Orth, Marco Capelli, Petr Cigler, David A. Simpson y Brant C. Gibson. (2019). Not all fluorescent nanodiamonds are created equal: a comparative study. Particle & Particle Systems Characterization, 36(3). https://doi.org/10.1002/ppsc.201900009.

Rho, Yoonsoo, Heuiseok Kang, Costas P. Grigoropoulos y Kyung-Tae Kang. (2020). Site-selective synthesis of onion like carbon from nanodiamond thin film via laser-assisted photothermal process. Applied Physics A, 126(9): 703. https://doi.org/10.1007/s00339-020-03875-x.

Rittweger, Eva, Kyu Young Han, Scott E Irvine, Christian Eggeling y Stefan W. Hell. (2009). STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics, 3(3): 144. https://doi.org/10.1038/nphoton.2009.2.

Rodríguez Nuñez, Jesús Manuel. (2012). Propiedades ópticas de nanodiamantes obtenidos por detonación de 5 nm aplicables a imagenología y dosimetría biológica, tesis de maestría. Departamento de Investigación en Física, Universidad de Sonora. https://1library.co/document/y9gl9rwq-propiedades-nanodiamantes-obtenidos-detonacion-aplicables-imagenologia-dosimetria-biologica.html.

Sarkar, S. K., A. Bumb, X. Wu, K. A. Sochacki, P. Kellman, M. W. Brechbiel y K. C. Neuman. (2014). Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed Opt Express, 5(4): 1190-202. https://doi.org/10.1364/BOE.5.001190.

Schrand, Amanda M., Suzanne A. Ciftan Hens y Olga A. Shenderova. (2009). Nanodiamond particles: properties and perspectives for bioapplications. Critical reviews in solid state and materials sciences, 34(1-2): 18-74. https://doi.org/10.1080/10408430902831987.

Schwertfeger, Hartmut, Andrey A. Fokin y Peter R. Schreiner. (2008). Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane. Angewandte Chemie International Edition, 47(6): 1022-1036. https://doi.org/10.1002/anie.200701684.

Scopus. (2022). TITLE-ABS-KEY (nanodiamonds). Scopus. https://www.scopus.com/term/analyzer.uri?sid=56dca872aea318cdc266e376f3d7626d&origin=resultslist&src=s&s=TITLE-ABS-KEY%28nanodiamonds%29&sort=plf-f&sdt=b&sot=b&sl=27&count=5278&analyzeResults=Analyze+results&txGid=0497df19326f7c1be7e7ea135ce99c39. (Consultado, marzo 31, 2022).

Shalaginov, M. Y., G. V. Naik, S. Ishii, M. N. Slipchenko, A. Boltasseva, J. X. Cheng, A. N. Smolyaninov, E. Kochman y V. M. Shalaev. (2011). Characterization of nanodiamonds for metamaterial applications. Applied Physics B, 105(2): 191. https://doi.org/10.1007/s00340-011-4718-6.

Shankar, Nagraj, Nick G. Glumac, Min-Feng Yu y S. P. Vanka. (2008). Growth of nanodiamond/carbon-nanotube composites with hot filament chemical vapor deposition. Diamond and Related Materials, 17(1): 79-83. https://doi.org/10.1016/j.diamond.2007.10.031.

Sharin, P. P., A. V. Sivtseva y V. I. Popov. (2021). X-Ray photoelectron spectroscopy of nanodiamonds obtained by grinding and detonation synthesis. Technical Physics, 66(2): 275-279. https://doi.org/10.1134/S1063784221020183.

Shenderova, Olga A. y Suzanne A. Ciftan Hens. (2013). Nanodiamonds. En Robert Vajtai (ed.), Springer handbook of nanomaterials, 263-300. Berlín, Heidelberg: Springer Berlin Heidelberg.

Shenderova, Olga y Nicholas Nunn. (2017). Chapter 2 - Production and purification of nanodiamonds. En Jean-Charles Arnault (ed.), Nanodiamonds, 25-56. Elsevier.

Shenderova, Olga y A. Ya. Vul’. (2014). Detonation nanodiamonds: science and applications: CRC Press. Taylor &Francis Group.

Shimkunas, Rafael A., Erik Robinson, Robert Lam, Steven Lu, Xiaoyang Xu, Xue-Qing Zhang, Houjin Huang, Eiji Osawa y Dean Ho. (2009). Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials, 30(29): 5720-5728.

Shuai, Cijun, Yang Li, Guoyong Wang, Wenjing Yang, Shuping Peng y Pei Feng. (2019). Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. International Journal of Biological Macromolecules, 126: 1116-1124. https://doi.org/10.1016/j.ijbiomac.2019.01.004.

Silbajoris, Robert, William Linak, Olga Shenderova, Christopher Winterrowd, Huan-Cheng Chang, Jay L. Zweier, Anirudh Kota, Lisa A. Dailey, Nicholas Nunn, Philip A. Bromberg y James M. Samet. (2015). Detonation nanodiamond toxicity in human airway epithelial cells is modulated by air oxidation. Diamond and Related Materials, 58: 16-23. https://doi.org/10.1016/j.diamond.2015.05.007.

Sinolits, Artem V., Maria G. Chernysheva, Andrey G. Popov, Alexander V. Egorov y Gennadii A. Badun. (2021). Hyaluronic acid adsorption on nanodiamonds: Quantitative characteristics and mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 618: 126461. https://doi.org/10.1016/j.colsurfa.2021.126461.

Soboleva, Oxana A., Elena V. Porodenko, Maria G. Chernysheva, Viktor I. Korobkov, Ivan Yu Myasnikov y Gennadii A. Badun. (2018). Composite films based on polyvinyl alcohol and detonation nanodiamonds with modified surface. Materials Today: Proceedings. 5(12, Part 3): 25907-25910. https://doi.org/10.1016/j.matpr.2018.08.001.

Stehlik, Stepan, Jiri Henych, Pavla Stenclova, Robert Kral, Petra Zemenova, Jiri Pangrac, Ondrej Vanek, Alexander Kromka y Bohuslav Rezek. (2021). Size and nitrogen inhomogeneity in detonation and laser synthesized primary nanodiamond particles revealed via salt-assisted deaggregation. Carbon, 171: 230-239.

Su, Long-Jyun, Hsin-Hung Lin, Meng-Shiue Wu, Lei Pan, Kanchan Yadav, Hsao-Hsun Hsu, Thai-Yen Ling, Yit-Tsong Chen y Huan-Cheng Chang. (2019). Intracellular delivery of luciferase with fluorescent nanodiamonds for dual-modality imaging of human stem cells. Bioconjugate Chemistry, 30(8): 2228-2237. https://doi.org/10.1021/acs.bioconjchem.9b00458.

Suarez-Kelly, Lorena P., Amanda R. Campbell, Isaac V. Rampersaud, Ambika Bumb, Min S. Wang, Jonathan P. Butchar, Susheela Tridandapani, Lianbo Yu, Arfaan A. Rampersaud y William E. Carson. (2017). Fluorescent nanodiamonds engage innate immune effector cells: A potential vehicle for targeted anti-tumor immunotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3): 909-920. https://doi.org/10.1016/j.nano.2016.12.005.

Suzuki, Hirofumi, Mutsumi Okada, Yoshiharu Namba y Tomohiro Goto. 2019. “Superfinishing of polycrystalline YAG ceramic by nanodiamond slurry. CIRP Annals, 68(1): 361-364. https://doi.org/10.1016/j.cirp.2019.04.062.

Taherpour, Avat A. y Farimah Mousavi. (2018). Chapter 6 - Carbon nanomaterials for electroanalysis in pharmaceutical applications. En Alexandru Mihai Grumezescu (ed.), Fullerens, graphenes and nanotubes, 169-225. William Andrew Publishing.

Tanaka, Ippei, Hiroshi Okubo y Yasunori Harada. (2021). Diamond synthesis on Si by plasma chemical vapor deposition using microwave sheath-voltage combination plasma. Surface and Coatings Technology, 423: 127592. https://doi.org/10.1016/j.surfcoat.2021.127592.

Taylor, Alice C., Citlali Helenes González, Benjamin S. Miller, Robert J. Edgington, Patrizia Ferretti y Richard B. Jackman. (2017). Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. Scientific reports, 7(1): 1-11. https://doi.org/10.1038/s41598-017-07361-y.

Thiering, Gergő y Adam Gali. (2020). Chapter one - Color centers in diamond for quantum applications. En Christoph E. Nebel, Igor Aharonovich, Norikazu Mizuochi y Mutsuko Hatano (eds.), Semiconductors and semimetals, 1-36. Elsevier.

Tinwala, Hussain y Sarika Wairkar. (2019). Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Materials Science and Engineering: C, 97: 913-931. https://doi.org/10.1016/j.msec.2018.12.073.

Tisler, Julia, Gopalakrishnan Balasubramanian, Boris Naydenov, Roman Kolesov, Bernhard Grotz, Rolf Reuter, Jean-Paul Boudou, Patrick A. Curmi, Mohamed Sennour, Alain Thorel, Michael Börsch, Kurt Aulenbacher, Rainer Erdmann, Philip R. Hemmer, Fedor Jelezko y Jörg Wrachtrup. (2009). Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano, 3(7): 1959-1965. https://doi.org/10.1021/nn9003617.

Torelli, Marco D., Ashlyn G. Rickard, Marina V. Backer, Daria S. Filonov, Nicholas A. Nunn, Alexander V. Kinev, Joseph M. Backer, Gregory M. Palmer y Olga A. Shenderova. (2019). Targeting fluorescent nanodiamonds to vascular endothelial growth factor receptors in tumor. Bioconjugate Chemistry, 30(3): 604-613. https://doi.org/10.1021/acs.bioconjchem.8b00803.

Turcheniuk, Kostiantyn y Vadym N. Mochalin. (2017). Biomedical applications of nanodiamond. Nanotechnology, 28(25): 252001. https://doi.org/10.1088/1361-6528/aa6ae4.

Usoltseva, L. O., D. S. Volkov, D. A. Nedosekin, M. V. Korobov, M. A. Proskurnin y V. P. Zharov. (2018). Absorption spectra of nanodiamond aqueous dispersions by optical absorption and optoacoustic spectroscopies. Photoacoustics, 12: 55-66. https://doi.org/10.1016/j.pacs.2018.10.003.

Vaijayanthimala, V., Po-Yun Cheng, Shih-Hua Yeh, Kuang-Kai Liu, Cheng-Hsiang Hsiao, Jui- I. Chao y Huan-Cheng Chang. (2012). The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33(31): 7794-7802. https://doi.org/10.1016/j.biomaterials.2012.06.084.

Vaijayanthimala, V. V. y Chang, H.-C. (2009). Functionalized fluorescent nanodiamonds for biomedical applications. Future Medicine Ltd, 4(1): 47-55. https://doi.org/10.2217/17435889.4.1.47.

Villalba, Pedro, Manoj K. Ram, Humberto Gomez, Venkat Bhethanabotla, My N. Helms, Amrita Kumar y Ashok Kumar. (2012). Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. Materials Science and Engineering: C, 32(3): 594-598. https://doi.org/10.1016/j.msec.2011.12.017.

Vlasov, I. I., A. A. Shiryaev, T. Rendler, S. Steinert, S. Y. Lee, D. Antonov, M. Voros, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konov, A. Gali y J. Wrachtrup. (2014). Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol, 9(1): 54-8. https://doi.org/10.1038/nnano.2013.255.

Volkov, Dmitry, Pavel Semenyuk, M. Korobov y Mikhail Proskurnin. (2012). Quantification of nanodiamonds in aqueous solutions by spectrophotometry and thermal lens spectrometry. Journal of Analytical Chemistry, 67. https://doi.org/10.1134/S1061934812 100115.

Volkov, K. V., V. V. Danilenko y V. I. Elin. (1990). Diamond synthesis from the carbon of detonation products. Fiz. Goren. Vzriva, 26: 123-125.

Wang, C., B. Zheng, W. T. Zheng y Q. Jiang. (2008). Electronic properties of dehydrogenated nanodiamonds: A first-principles study. Diamond and Related Materials, 17(2): 204-208. https://doi.org/10.1016/j.diamond.2007.12.024.

Wee, Tse-Luen, Yi-Wen Mau, Chia-Yi Fang, Hsiang-Ling Hsu, Chau-Chung Han y Huan-Cheng Chang. (2009). Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diamond and Related Materials, 18(2-3): 567-573. https://doi.org/10.1016/j.diamond.2008.08.012.

Williams, O. (2014). Nanodiamond. Cambridge, UK: Royal Society of Chemistry.

Wilson, E. R., L. M. Parker, A. Orth, N. Nunn, M. Torelli, O. Shenderova, B. C. Gibson y P. Reineck. (2019). The effect of particle size on nanodiamond fluorescence and colloidal properties in biological media. Nanotechnology, 30(38): 385704. https://doi.org/10.1088/1361-6528/ab283d.

Wu, Tsai-Jung, Hsiao-Yu Chiu, John Yu, Mafalda P. Cautela, Bruno Sarmento, José das Neves, Carme Catala, Nicolas Pazos-Perez, Luca Guerrini, Ramon A. Alvarez-Puebla, Sanja Vranješ-Đurić y Nenad L. Ignjatović. (2018). Chapter 1 - Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. En Vuk Uskoković y Dragan P. Uskoković (eds.), Nanotechnologies in preventive and regenerative medicine, 1-92. Elsevier.

Wu, Yuzhou, Anna Ermakova, Weina Liu, Goutam Pramanik, Tran Minh Vu, Andrea Kurz, Liam McGuinness, Boris Naydenov, Susanne Hafner, Rolf Reuter, Joerg Wrachtrup, Junichi Isoya, Christina Förtsch, Holger Barth, Thomas Simmet, Fedor Jelezko y Tanja Weil. (2015). Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds. Advanced Functional Materials, 25 (42): 6576-6585. https://doi.org/10.1002/adfm.201502704.

Xing, Yun, Wei Xiong, Lin Zhu, Eiji Osawa, Saber Hussin y Liming Dai. (2011). DNA damage in embryonic stem cells caused by nanodiamonds. ACS nano, 5(3): 2376-2384.

Xu, Dazhuang, Meiying Liu, Qin Zhang, Qiang Huang, Hongye Huang, Jianwen Tian, Ruming Jiang, Yuanqing Wen, Xiaoyong Zhang y Yen Wei. (2018). Preparation of water dispersible and biocompatible nanodiamond-poly(amino acid) composites through the ring-opening polymerization. Materials Science and Engineering: C, 91: 496-501. https://doi.org/10.1016/j.msec.2018.05.053.

Yu, Mengxiao y Jie Zheng. (2015). Clearance pathways and tumor targeting of imaging.

Yu, Shu-Jung, Ming-Wei Kang, Huan-Cheng Chang, Kuan-Ming Chen y Yueh-Chung Yu. (2005). Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. Journal of the American Chemical Society, 127(50): 17604-17605.

Yu, Xinglin, Xiangdong Chen, Xing Ding, Xinpeng Chen, Xiang Yu y Xuan Zhao. (2019). High-sensitivity and low-hysteresis humidity sensor based on hydrothermally reduced graphene oxide/nanodiamond. Sensors and Actuators B: Chemical, 283: 761-768.

Yushin, G. N., S. Osswald, V. I. Padalko, G. P. Bogatyreva y Y. Gogotsi. (2005). Effect of sintering on structure of nanodiamond. Diamond and Related Materials, 14(10): 1721-1729. https://doi.org/10.1016/j.diamond.2005.06.030.

Zhang, Qingwei, Vadym N. Mochalin, Ioannis Neitzel, Isabel Y. Knoke, Jingjia Han, Christopher A. Klug, Jack G. Zhou, Peter I. Lelkes y Yury Gogotsi. (2011). Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, 32(1): 87-94. https://doi.org/10.1016/j.biomaterials.2010.08.090.

Zhang, T., Cui, H., Fang, C. Y., Cheng, K., Yang, X., Chang, H. C. y Forrest, M. L. (2015). Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine, 10(4): 573-587. https://doi.org/10.2217/nnm.14.141.

Zhang, Xue-Qing, Mark Chen, Robert Lam, Xiaoyang Xu, Eiji Osawa y Dean Ho. (2009). Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano, 3(9): 2609-2616. https://doi.org/10.1021/nn900865g.

Zhang, Yinhang, Kyong Yop Rhee, David Hui y Soo-Jin Park. (2018). A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Composites Part B: Engineering, 143: 19-27. https://doi.org/10.1016/j.compositesb.2018.01.028.

Zhu, Ying, Yu Zhang, Guosheng Shi, Jinrong Yang, Jichao Zhang, Wenxin Li, Aiguo Li, Renzhong Tai, Haiping Fang y Chunhai Fan. (2015). Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Particle and fibre toxicology, 12(1): 1-11. https://doi.org/10.1186/s12989-014-0075-z.

Zhu, Yongwei, Zhijing Feng, Baichun Wang y Xianyang Xu. (2004). Dispersion of nanodiamond and ultra-fine polishing of quartz wafer. China Particuology, 2(4): 153-156. https://doi.org/10.1016/S1672-2515(07)60046-3.

Zousman, Boris y Olga Levinson. (2012). Monodispersed nanodiamonds produced by laser ablation. MRS Online Proceedings Library, 1452(1): 32-38. https://doi.org/10.1557/opl.2012.1339.

Publicado
2023-02-21
Cómo citar
Rodríguez-Báez, A., Pérez-Morales, N., & Martel Estrada, S. (2023). Aplicaciones de los nanodiamantes fluorescentes. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-48e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69673