Graphene oxide nanoparticles and graphite microparticles on seeds germination and growth of Solanum lycopersicum seedlings

  • Ileana Vera-Reyes Centro de Investigación en Química Aplicada (CIQA), Departamento de Biociencias y Agrotecnología. Saltillo, Coahuila, México. https://orcid.org/0000-0003-4105-4315
  • Mariana López-García Centro de Investigación en Química Aplicada (CIQA), Departamento de Biociencias y Agrotecnología. Saltillo, Coahuila, México.
  • Norma Angélica Ruiz-Torres Universidad Autónoma Agraria Antonio Narro, Departamento de Tecnología de Semillas. Saltillo, Coahuila, México. https://orcid.org/0000-0002-9617-6195
  • Bulmaro Méndez-Argüello Universidad Para el Bienestar Benito Juárez García. Ciudad de Chilón, Chiapas, México.
  • Ricardo Hugo Lira-Saldivar Centro de Investigación en Química Aplicada (CIQA), Departamento de Biociencias y Agrotecnología. Saltillo, Coahuila, México. https://orcid.org/0000-0002-8045-2052
Palabras clave: agronanotechnology, nanocarbon, nanofertilizers, tomato

Resumen

Nanotechnology (NT) can modernize agriculture with new tools that allow better nourished and protected crops. Graphene oxide (GO) is a new kind of carbon-based nanomaterial with unique structural and physicochemical properties, which is very useful for many agricultural applications. GO, the two-dimensional carbon nanoparticles, have attracted increasing attention in the last few years because these contain large amounts of functional oxygen groups; therefore, they could be used as a fertilizer carrier to slow the release rate and improve the nutrients use efficiency, which makes this material suitable for developing new slow-release fertilizers. In this study, the application of GO nanoparticles (NPs) and graphite microparticles were compared as potential promoters of tomato seed germination and seedlings growth. Concentrations of 0, 50, 100, 200, and 500 mg L–1 were applied, using distilled water and micro-size graphite as controls. GO treatments improved root growth dose-dependently by increasing the seed vigor and showing significant differences (P ≤ 0.05) between treatments applied, increasing antioxidant enzymes activities. When using the dose of 200 mg L–1 GONPs, the radicle length was stimulated (31%) compared to the control seedlings. The graphite NPs performed better than the control in all variables; however, they were surpassed by the treatments with GONPs.

Citas

Aebi, H. (1984). Catalase. In L. Packer (Ed.), Methods in enzymology, 105: 121-126. Orlando: Academic pres. https://doi.org/10.1016/S0076-6879(84)05016-3.

Andelkovic, I. B., Kabiri, S., Tavakkoli, E., Kirby, J. K., McLaughlin, M. J. and Losic, D. (2018). Graphene oxide-Fe (III) composite containing phosphate–A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 185: 97-104. https://doi.org/10.1016/j.jclepro.2018.03.050.

Balzarini, M., Casanoves, F., Di Rienzo, J., González, I. A., Robledo, C., Tablada, M. (2001). Software estadístico InfoStat. Manual de usuario, Version 1.

Chen, Z., Guo, Z., Niu, J., Xu, N., Sui, X., Kareem, H. A. and Wang, Q. (2022). Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis. Chemosphere, 290: 133368. https://doi.org/10.1016/j.chemosphere.2021.133368.

Elavarthi, S. y Martin, B. (2010). Spectrophotometric assays for antioxidant enzymes in plants. Plant Stress Tolerance: Methods and Protocols, 273-280. https://doi.org/10.1007/978-1-60761-702-0_16.

FAO. (2019). Materiales para capacitación en semillas. Módulo 3: Control de calidad y certificación de semillas. http://www.fao.org/3/ca1492es/CA1492ES.pdf. https://doi.org.10.4060/cb8248es. (Consult, August 18, 2021).

Feng, P., Geng, B., Cheng, Z., Liao, X., Pan, D. and Huang, J. (2019). Graphene quantum dots-induced physiological and biochemical responses in mung bean and tomato seedlings. Brazilian Journal of Botany, 42(1): 29-41. https://doi.org/10.1007/s40415-019-00519-0.

Gazzi, A., Fusco, L., Orecchioni, M., Ferrari, S., Franzoni, G., Yan, J. S. and Delogu, L. G. (2020). Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. Journal of Physics: Materials, 3(3): 034009. https://doi.org/10.1088/2515-7639/ab9317.

González-García, Y., López-Vargas, E. R., Cadenas-Pliego, G., Benavides-Mendoza, A., González-Morales, S., Robledo-Olivo, A. y Juárez-Maldonado, A. (2019). Impact of carbon nanomaterials on the antioxidant system of tomato seedlings. International Journal of Molecular Sciences, 20(23): 5858. https://doi.org/10.3390/ijms20235858.

González-Morones, P., Hernández-Hernández, E., Fernández-Tavizón, S., Ledezma-Rodríguez, R., Sáenz-Galindo, A., Cadenas-Pliego, G. and Ziolo, R. F. (2018). Exfoliation, reduction, hybridization and polymerization mechanisms in one-step microwave-assist synthesis of nanocomposite nylon-6/graphene. Polymer, 146: 73-81. https://doi.org/10.1016/j.polymer.2018.05.014.

Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M. y Wu, J. (2021). Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, 162: 447-455. https://doi.org/10.1016/j.plaphy.2021.03.013.

He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q. and Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11(4): 1928-1937. https://doi.org/10.1007/s12274-017-1810-1.

International Seed Testing Association (ISTA). (2004). International rules for seed testing. Zurich, Switzerland, 243 pp. https://doi.org/10.1007/s12274-017-1810-1.

Kalwani, M., Chakdar, H., Srivastava, A., Pabbi, S. and Shukla, P. (2022). Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere, 287: 132107. https://doi.org/10.1016/j.chemosphere.2021.132107.

Jiao, J., Cheng, F., Zhang, X., Xie, L., Li, Z., Yuan, C and Zhang, L. (2016). Preparation of graphene oxide and its mechanism in promoting tomato roots growth. Journal of Nanoscience and Nanotechnology, 16(4): 4216-4223. https://doi.org/10.1166/jnn.2016.12601.

Johnson, M. S., Sajeev, S. and Nair, R. S. (2021). Role of nanosensors in agriculture. En 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), 58-63. IEEE. https://doi.org/10.1109/ICCIKE51210.2021.9410709.

Lee, J. Y., Kim, M. J. and Chung, H. (2021). Effects of graphene oxide on germination and early growth of plants. Journal of Nanoscience and Nanotechnology, 21(10): 5282-5288. https://doi.org/10.1166/jnn.2021.19361.

Lira-Saldivar, R. H., Argüello-Méndez, B., de los Santos-Villarreal, G., Reyes-Vera, I. (2018). Nanotechnology potential in sustainable agriculture. Acta Universitaria, 28: 9-24. https://doi.org/10.15174/au.2018.1575.

López-Vargas, E. R., González-García, Y., Pérez-Álvarez, M., Cadenas-Pliego, G., González-Morales, S., Benavides-Mendoza, A. and Juárez-Maldonado, A. (2020). Seed priming with carbon nanomaterials to modify the germination, growth, and antioxidant status of tomato seedlings. Agronomy, 10(5): 639. https://doi.org/10.3390/agronomy10050639.

Mahmoud, N. E. and Abdelhameed, R. M. (2021). Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (Pennisetum glaucum L.) under salt stress. Plant Stress, 2: 100025. https://doi.org/10.1016/j.stress.2021.100025.

Nakano, Y., Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28: 131-140. https://doi.org/10.1093/oxfordjournals.pcp.a077268.

Park, S., Choi, K. S., Kim, S., Gwon, Y. and Kim, J. (2020). Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials, 10(4): 758. https://doi.org/10.3390/nano10040758.

Peretti, A. (1994). Manual para análisis de semillas. Argentina: Editorial Hemisferio Sur.

Putter, J. (1974). Peroxidases. In Bergmeyer, H. U. (ed.), Methods of enzymatic analysis: II. New York: Academic Press, 685-690.

Rajput, V. D., Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M. and Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4): 267. https://doi.org/10.3390/biology10040267.

Ren, W., Chang, H., Li, L. and Teng, Y. (2020). Effect of graphene oxide on growth of wheat seedlings: Insights from oxidative stress and physiological flux. Bulletin of Environmental Contamination and Toxicology, 105(1): 139-145. https://doi.org/10.1007/s00128-020-02888-9.

Shen, S., Liu, Y., Wang, F., Yao, G., Xie, L. and Xu, B. (2018). Graphene oxide regulates root development and influences IAA concentration in rice. Journal of Plant Growth Regulation, 1-8. https://doi.org/10.1007/s00344-018-9836-5.

Singh, S. P., Keswani, C., Minkina, T. Ortiz, A. and Sansinenea, E. (2023). Nano-inputs: a next-generation solution for sustainable crop production. Journal of Plant Growth Regulation, 1-14. https://doi.org/10.1007/s00344-023-10943-y.

Sole, C., Drewett, N. E. and L. J. Hardwick. (2014). In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss, 172: 223–237. https://doi.org/10.1039/C4FD00079J.

Tshabalala, Z. P., Mokoena, T. P. and Motaung, D. E. (2022). Current commercial nanosensors and devices/products used in agriculture. En Nanosensors for smart agriculture. Elsevier, 165-181. https://doi.org/10.1016/B978-0-12-824554-5.00034-3.

Wijewardana, C., Reddy, K. R., Krutz, L. J., Gao, W. and Bellaloui, N. (2019). Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS One, 14(9): e0214977. https://doi.org/10.1371/journal.pone.0214977.

Wu, Q., Fan, C., Wang, H., Han, Y., Tai, F., Wu, J. and He, R. (2023). Biphasic impacts of graphite-derived engineering carbon-based nanomaterials on plant performance: Effectiveness vs nanotoxicity. Advanced Agrochem, https://doi.org/10.1016/j.aac.2023.01.001.

Zhang, X., Cao, H., Zhao, J., Wang, H., Xing, B., Chen, Z. and Zhang, J. (2021). Graphene oxide exhibited positive effects on the growth of Aloe vera L. Physiology and Molecular Biology of Plants, 27(4): 815-824. https://doi.org/10.1007/s12298-021-00979-3.

Zhang, M., Gao, B., Chen, J., Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17(2): 1-8.

Zhang, P., Zhang, R., Fang, X., Song, T., Cai, X., Liu, H. (2016). Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short-and long-term exposure studies. Journal of Hazardous Materials, 317: 543-551. https://doi.org/10.1007/s11051-015-2885-9.

Zhang, W. H., Yin, M. J., Zhao, Q., Jin, C. G., Wang, N., Ji, S. and An, Q. F. (2021). Graphene oxide membranes with stable porous structure for ultrafast water transport. Nature Nanotechnology, 16(3): 337-343. https://doi.org/10.1038/s41565-020-00833-9.

Xie, H., Fujii, M., Zhang, X. (2005). Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 48(14): 2926-2932. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.040.

Publicado
2023-05-11
Cómo citar
Vera-Reyes, I., López-García, M., Ruiz-Torres, N., Méndez-Argüello, B., & Lira-Saldivar, R. (2023). Graphene oxide nanoparticles and graphite microparticles on seeds germination and growth of Solanum lycopersicum seedlings. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-14e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69734