Síntesis verde de nanopartículas de magnetita (NPs-Fe3O4): factores y limitaciones

Palabras clave: síntesis verde, NPs-Fe3O4, pH, condiciones de síntesis

Resumen

La nanotecnología es considerada como la revolución industrial del siglo XXI, por esto la obtención y aplicación de nanopartículas (NPs) es de vital interés para muchos rubros de la ciencia e industria. El uso de las NPs-Fe3O4 obtenidas por síntesis verde se extiende desde la cosmética, medicina, remediación ambiental, eléctrica y electrónica, debido a sus características térmicas, ópticas y magnéticas, sin mencionar el bajo costo de producción. En esta revisión se analizan los factores con mayor efecto durante la síntesis de NPs-Fe3O4 como lo son el pH, la temperatura, el tiempo, la cantidad de precursores metálicos y cantidad de metabolitos secundarios; variables que afectan de manera directa el tamaño, forma y morfología de las NPs-Fe3O4.

Citas

Abdullah, Mahmood, Ayman Atta, Hamad Allohedan, Hamad Alkhathlan, M. Khan y Abdelrahman Ezzat. (2018). Green synthesis of hydrophobic magnetite nanoparticles coated with plant extract and their application as petroleum oil spill collectors. Nanomaterials 8 (10): 855. https://doi.org/10.3390/nano8100855.

Alvear, David, Salomé Gales, Víctor Hugo Guerrero y Alexis Debut. (2017). Síntesis y caracterización de nanopartículas de magnetita. Revista Politecnica, 39(2): 220-226, Escuela Politécnica del Ecuador. https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/545.

Astruc, Didier. (2008). Nanoparticles and Catalysis, 1. John Wiley & Sons.

Azadi, Fatemeh, Ayoub Karimi-Jashni, y Mohammad Mahdi Zerafat. 2018. Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment. Ecotoxicology and Environmental Safety.

Bandeira, Marina, Marcelo Giovanela, Mariana Roesch-Ely, Declan M. Devine y Janaina da Silva Crespo. (2020). Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(marzo): 100223. https://doi.org/10.1016/j.scp.2020.100223.

Bolade, Oladotun P., Akan B. Williams, y Nsikak U. Benson. (2020). Green synthesis of ironbased nanomaterials for environmental remediation: a review. Environmental Nanotechnology, Monitoring & Management, 13(mayo): 100279. https://doi.org/10.1016/j.enmm.2019.100279.

Burlacu, Ema, Corneliu Tanase, Năstaca-Alina Coman y Lavinia Berta. (2019). A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules 24(23): 4354. https://doi.org/10.3390/molecules24234354.

Cao, Guozhong y Ying Wang. (2004). Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Seattle Washington: Imperial College Press.

Chakraborty, Samarshi, y Pradipta Kumar Panigrahi. (2020). Stability of nanofluid: a review. Applied Thermal Engineering, 174(junio): 115259. https://doi.org/10.1016/j.applthermaleng.2020.115259.

Clarina, T., P. Joice Flomina, P. Thangeswari y V. Rama. (2018). Polpala flower extract mediated one step green synthesis and characterization of magnetite (Fe3O4) nanoparticles. Asian Journal of Research in Chemistry, 11(2): 459. https://doi.org/10.5958/0974-4150.2018.00083.4.

Das, Chanchal, Subhadeep Sen, Tejinder Singh, Tanmoy Ghosh, Subha Sankar Paul, Tae Wan Kim, Seob Jeon, Dilip K. Maiti, Jungkyun Im y Goutam Biswas. (2020). Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials, 10(8): 1615. https://doi.org/10.3390/nano10081615.

Devatha, Chella Purushothaman y Arun K. Thalla. (2018). Green synthesis of nanomaterials. Synthesis of Inorganic Nanomaterials, 169-84. Elsevier. https://doi.org/10.1016/B978-0-08-101975-7.00007-5.

Ealias, Anu Mary y M. P. Saravanakumar. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263 (3): 0-15. https://doi.org/10.1088/1757899X/263/3/032019.

Fahmy, Heba Mohamed, Fatma Mahmoud Mohamed, Mariam Hisham Marzouq, Amira Bahaa El Din Mustafa, Asmaa M. Alsoudi, Omnia Ashoor Ali, Maha A. Mohamed y Faten Ahmed Mahmoud. (2018). Review of green methods of iron nanoparticles synthesis and applications. BioNanoScience, 8(2): 491-503. https://doi.org/10.1007/s12668-0180516-5.

Finch, C. A., ed. (1983). Chemistry and technology of water-soluble polymers. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4757-9661-2.

Gnanaprakash, G., S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, John Philip y Baldev Raj. (2007). Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Materials Chemistry and Physics, 103(1): 168-75. https://doi.org/10.1016/j.matchemphys.2007.02.011.

Herrera-Becerra, R., C. Zorrilla, J. L. Rius y J. A. Ascencio. (2008). Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Applied Physics A, 91(2): 241-46. https://doi.org/10.1007/s00339-008-4420-7.

Huang, Lanlan, Xiulan Weng, Zuliang Chen, Mallavarapu Megharaj y Ravendra Naidu. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117(enero): 801-4. https://doi.org/10.1016/j.saa.2013.09.054.

Iravani, Siavash. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638. https://doi.org/10.1039/C1GC15386B.

Kanagasubbulakshmi, S. y K. Kadirvelu. (2017). Green synthesis of iron oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Science Journal, 2(4): 422. https://doi.org/10.14429/dlsj.2.12277.

Kanichi. y Ahmed. (2018). Green metal nanoparticles, characterization and applications of nanoparticles. green synthesis, characterization and applications of nanoparticles. https://doi.org/10.1016/c2017-0-02526-0.

Karade, V. C., T. D. Dongale, Subasa C. Sahoo, P. Kollu, A. D. Chougale, P. S. Patil y P. B. Patil. (2018). Effect of reaction time on structural and magnetic properties of greens ynthesized magnetic nanoparticles. Journal of Physics and Chemistry of Solids, 120(septiembre): 161-66. https://doi.org/10.1016/j.jpcs.2018.04.040.

Khalilzadeh, Mohammad A., Somayeh Tajik, Hadi Beitollahi y Richard A. Venditti. (2020). Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): Investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Industrial & Engineering Chemistry Research, 59(10): 4219-28. https://doi.org/10.1021/acs.iecr.9b06214.

Khan, Ibrahim, Khalid Saeed y Idrees Khan. (2019). Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry, 12(7): 908-31. https://doi.org/10.1016/j.arabjc.2017.05.011.

Liu, Hongyu, Huan Zhang, Jie Wang y Junfu Wei. (2020). Effect of temperature on the size of biosynthesized silver nanoparticles: deep insight into microscopic kinetics analysis. Arabian Journal of Chemistry, 13(1): 1011-19. https://doi.org/10.1016/j.arabjc.2017.09.004.

Malik, Parth, Ravi Shankar, Vibhuti Malik, Nitin Sharma y Tapan Kumar Mukherjee. (2014). Green chemistry based benign routes for nanoparticle synthesis. Journal of Nanoparticles, 2014: 1-14. https://doi.org/10.1155/2014/302429.

Mandloi, Rakhi, Anamika Jain y Bindiya Sharma. (2021). Green synthesis of iron oxide (Fe2O3 ) nanoparticles using Neolamarckia cadamba leaves extract and photocatalytic degradation of malachite green. International Journal of Innovative Science and Research Technology.

Marslin, Gregory, Karthik Siram, Qaisar Maqbool, Rajendran Selvakesavan, Dariusz Kruszka, Piotr Kachlicki y Gregory Franklin. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11(6): 940. https://doi.org/10.3390/ma11060940.

Moran, Jose F., Robert V. Klucas, Renée J. Grayer, Joaquin Abian y Manuel Becana. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22(5): 861-70. https://doi.org/10.1016/S0891-5849(96)00426-1.

Nasrollahzadeh, Mahmoud, S. Mohammad Sajadi, Mohaddeseh Sajjadi y Zahra Issaabadi. (2019). Applications of nanotechnology in daily life. Interface Science and Technology, 28: 113-43. Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3.

Ndiaye, Edouard Mbarick, Y. El Idrissi Yousra, Sow Alioune, Nicolas Cyrille Ayessou, Hicham Harhar, Mady Cisse y Mohamed Tabyaoui. (2021). Secondary metabolites and antioxidant activity of different parts of the baobab fruit (<I>Adansonia Digitata</I> L.). Food and Nutrition Sciences, 12(07): 732-41. https://doi.org/10.4236/fns.2021.127055.

Nnadozie, Ebenezer C. y Peter A. Ajibade. (2020). Green synthesis and characterization of magnetite (Fe3O4 ) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Materials Letters, 263(marzo): 127145. https://doi.org/10.1016/j.matlet.2019.127145.

Pabón-Guerrero, Santiago Eduardo, Ricardo Benítez-Benítez, Rodrigo Andrés Sarria-Villa y José Antonio. (2021). Synthesis of iron oxide nanoparticles using aqueous extract de Eucalyptus grandis. DYNA, 8(0), 16220-226. Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v88n216.89031.

Pal, Gaurav, Priya Rai y Anjana Pandey. (2019). Green synthesis of nanoparticles: a greener approach for a cleaner future. Green Synthesis, Characterization and Applications of Nanoparticles, 1-26. Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00001-0.

Pan, Zibin, Yuman Lin, Binoy Sarkar, Gary Owens y Zuliang Chen. (2019). Green synthesis of iron nanoparticles using red peanut skin extract: synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 558 (noviembre): 106-14. https://doi.org/10.1016/j.jcis.2019.09.106.

Parajuli, Kshama, Aravind Kumar Sah y Hari Paudyal. (2020). Green synthesis of magnetite nanoparticles using aqueous leaves extracts of Azadirachta indica and its application for the removal of As(V) from water. Green and Sustainable Chemistry, 16.

Prakash, Dhan y Neeraj Kumar. (2011). Cost effective natural antioxidants. En Joe K. Gerald, Ronald Ross Watson y Victor R. Preedy (eds.), Nutrients, dietary supplements, and nutriceuticals. Totowa, N. J.: Humana Press, 163-87. https:// doi.org/10.1007/978-1-60761-308-4_12.

Rajan, Ramachandran, Krishnaraj Chandran, Stacey L. Harper, Soon-Il Yun y P. Thangavel Kalaichelvan. (2015). Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products, 70(agosto): 356-73. https://doi.org/10.1016/j.indcrop.2015.03.015.

Raveendran, Poovathinthodiyil, Jie Fu y Scott L. Wallen. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46): 13940-41. https://doi.org/10.1021/ja029267j.

Shah, Monaliben, Derek Fawcett, Shashi Sharma, Suraj Tripathy y Gérrard Poinern. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11): 7278-7308. https://doi.org/10.3390/ma8115377.

Shamaila, Sajjad, Ahmed Khan Leghari Sajjad, Najam ul Athar Ryma, Sidra Anis Farooqi, Nyla Jabeen, Sania Majeed y Iqra Farooq. (2016). Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Applied Materials Today, 5: 150-99. https://doi.org/10.1016/j.apmt.2016.09.009.

Shou, Qinghui, Chen Guo, Liangrong Yang, Lianwei Jia, Chunzhao Liu y Huizhou Liu. (2011). Effect of PH on the single-step synthesis of gold nanoparticles using PEO–PPO–PEO triblock copolymers in aqueous media. Journal of Colloid and Interface Science, 363(2): 481-89. https://doi.org/10.1016/j.jcis.2011.07.021.

Singh, Jagpreet, Tanushree Dutta, Ki Hyun Kim, Mohit Rawat, Pallabi Samddar y Pawan Kumar. (2018). “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1): 1-24. https://doi.org/10.1186/s12951-018-0408-4.

Sirdeshpande, Karthikey Devadatta, Anushka Sridhar, Kedar Mohan Cholkar y Raja Selvaraj. (2018). Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and Their photocatalytic degradation of malachite green dye. Applied Nanoscience, 8(4): 675-83. https://doi.org/10.1007/s13204-018-0698-8.

Song, Jae Yong y Beom Soo Kim. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1): 79-84. https://doi.org/10.1007/s00449-008-0224-6.

Stankus, Dylan P., Samuel E. Lohse, James E. Hutchison y Jeffrey A. Nason. (2011). Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environmental Science & Technology, 45(8): 323844. https://doi.org/10.1021/es102603p.

Vega-Chacón, Jaime, Gino Picasso, Luis Avilés-Félix y Miguel Jafelicci. (2016). Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1): 015014. https://doi.org/10.1088/2043-6262/7/1/015014.

Veisi, Hojat, Lida Mohammadi, Saba Hemmati, Taiebeh Tamoradi y Pourya Mohammadi. (2019). In situ immobilized silver nanoparticles on Rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: an efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega, 4(9): 13991-3. https://doi.org/10.1021/acsomega.9b01720.

Wang, Zhiqiang. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering, 1(12): 1551-54. https://doi.org/10.1021/sc400174a.

Wang, Zhiqiang, Cheng Fang y Megharaj Mallavarapu. (2015). Characterization of iron– polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environmental Technology & Innovation, 4(octubre): 92-97. https://doi.org/10.1016/j.eti.2015.05.004.

Weng, Xiulan, Li Ma, Mengyu Guo, Yaying Su, Rajarathnam Dharmarajan y Zuliang Chen. (2018). Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by Euphorbia cochinchinensis extract. Chemical Engineering Journal, 353(diciembre): 482-89. https://doi.org/10.1016/j.cej.2018.07.162.

Publicado
2022-10-13
Cómo citar
Valenzuela-Amaro, H., Vázquez Ortega, P., Zazueta-Alvarez, D., López-Miranda, J., & Rojas-Contreras, J. (2022). Síntesis verde de nanopartículas de magnetita (NPs-Fe3O4): factores y limitaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(30), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69744