Síntesis verde de nanopartículas de magnetita (NPs-Fe3O4): factores y limitaciones

Contenido principal del artículo

Hiram Martín Valenzuela-Amaro
https://orcid.org/0000-0001-8462-2402
Perla Guadalupe Vázquez Ortega
https://orcid.org/0000-0003-2052-9799
David Enrique Zazueta-Alvarez
https://orcid.org/0000-0002-6850-3988
Javier López-Miranda
https://orcid.org/0000-0002-3529-2096
Juan Antonio Rojas-Contreras
https://orcid.org/0000-0002-9632-7555

Resumen

La nanotecnología es considerada como la revolución industrial del siglo XXI, por esto la obtención y aplicación de nanopartículas (NPs) es de vital interés para muchos rubros de la ciencia e industria. El uso de las NPs-Fe3O4 obtenidas por síntesis verde se extiende desde la cosmética, medicina, remediación ambiental, eléctrica y electrónica, debido a sus características térmicas, ópticas y magnéticas, sin mencionar el bajo costo de producción. En esta revisión se analizan los factores con mayor efecto durante la síntesis de NPs-Fe3O4 como lo son el pH, la temperatura, el tiempo, la cantidad de precursores metálicos y cantidad de metabolitos secundarios; variables que afectan de manera directa el tamaño, forma y morfología de las NPs-Fe3O4.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Valenzuela-Amaro, H. M., Vázquez Ortega, P. G., Zazueta-Alvarez, D. E., López-Miranda, J., & Rojas-Contreras, J. A. (2022). Síntesis verde de nanopartículas de magnetita (NPs-Fe3O4): factores y limitaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(30), 1e-18e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69744
Sección
Sección especial

Citas

Abdullah, Mahmood, Ayman Atta, Hamad Allohedan, Hamad Alkhathlan, M. Khan y Abdelrahman Ezzat. (2018). Green synthesis of hydrophobic magnetite nanoparticles coated with plant extract and their application as petroleum oil spill collectors. Nanomaterials 8 (10): 855. https://doi.org/10.3390/nano8100855. DOI: https://doi.org/10.3390/nano8100855

Alvear, David, Salomé Gales, Víctor Hugo Guerrero y Alexis Debut. (2017). Síntesis y caracterización de nanopartículas de magnetita. Revista Politecnica, 39(2): 220-226, Escuela Politécnica del Ecuador. https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/545.

Astruc, Didier. (2008). Nanoparticles and Catalysis, 1. John Wiley & Sons. DOI: https://doi.org/10.1002/9783527621323

Azadi, Fatemeh, Ayoub Karimi-Jashni, y Mohammad Mahdi Zerafat. 2018. Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment. Ecotoxicology and Environmental Safety. DOI: https://doi.org/10.1016/j.ecoenv.2018.09.032

Bandeira, Marina, Marcelo Giovanela, Mariana Roesch-Ely, Declan M. Devine y Janaina da Silva Crespo. (2020). Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(marzo): 100223. https://doi.org/10.1016/j.scp.2020.100223. DOI: https://doi.org/10.1016/j.scp.2020.100223

Bolade, Oladotun P., Akan B. Williams, y Nsikak U. Benson. (2020). Green synthesis of ironbased nanomaterials for environmental remediation: a review. Environmental Nanotechnology, Monitoring & Management, 13(mayo): 100279. https://doi.org/10.1016/j.enmm.2019.100279. DOI: https://doi.org/10.1016/j.enmm.2019.100279

Burlacu, Ema, Corneliu Tanase, Năstaca-Alina Coman y Lavinia Berta. (2019). A review of bark-extract-mediated green synthesis of metallic nanoparticles and their applications. Molecules 24(23): 4354. https://doi.org/10.3390/molecules24234354. DOI: https://doi.org/10.3390/molecules24234354

Cao, Guozhong y Ying Wang. (2004). Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Seattle Washington: Imperial College Press. DOI: https://doi.org/10.1142/p305

Chakraborty, Samarshi, y Pradipta Kumar Panigrahi. (2020). Stability of nanofluid: a review. Applied Thermal Engineering, 174(junio): 115259. https://doi.org/10.1016/j.applthermaleng.2020.115259. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115259

Clarina, T., P. Joice Flomina, P. Thangeswari y V. Rama. (2018). Polpala flower extract mediated one step green synthesis and characterization of magnetite (Fe3O4) nanoparticles. Asian Journal of Research in Chemistry, 11(2): 459. https://doi.org/10.5958/0974-4150.2018.00083.4. DOI: https://doi.org/10.5958/0974-4150.2018.00083.4

Das, Chanchal, Subhadeep Sen, Tejinder Singh, Tanmoy Ghosh, Subha Sankar Paul, Tae Wan Kim, Seob Jeon, Dilip K. Maiti, Jungkyun Im y Goutam Biswas. (2020). Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials, 10(8): 1615. https://doi.org/10.3390/nano10081615. DOI: https://doi.org/10.3390/nano10081615

Devatha, Chella Purushothaman y Arun K. Thalla. (2018). Green synthesis of nanomaterials. Synthesis of Inorganic Nanomaterials, 169-84. Elsevier. https://doi.org/10.1016/B978-0-08-101975-7.00007-5. DOI: https://doi.org/10.1016/B978-0-08-101975-7.00007-5

Ealias, Anu Mary y M. P. Saravanakumar. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263 (3): 0-15. https://doi.org/10.1088/1757899X/263/3/032019. DOI: https://doi.org/10.1088/1757-899X/263/3/032019

Fahmy, Heba Mohamed, Fatma Mahmoud Mohamed, Mariam Hisham Marzouq, Amira Bahaa El Din Mustafa, Asmaa M. Alsoudi, Omnia Ashoor Ali, Maha A. Mohamed y Faten Ahmed Mahmoud. (2018). Review of green methods of iron nanoparticles synthesis and applications. BioNanoScience, 8(2): 491-503. https://doi.org/10.1007/s12668-0180516-5. DOI: https://doi.org/10.1007/s12668-018-0516-5

Finch, C. A., ed. (1983). Chemistry and technology of water-soluble polymers. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4757-9661-2. DOI: https://doi.org/10.1007/978-1-4757-9661-2

Gnanaprakash, G., S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, John Philip y Baldev Raj. (2007). Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Materials Chemistry and Physics, 103(1): 168-75. https://doi.org/10.1016/j.matchemphys.2007.02.011. DOI: https://doi.org/10.1016/j.matchemphys.2007.02.011

Herrera-Becerra, R., C. Zorrilla, J. L. Rius y J. A. Ascencio. (2008). Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Applied Physics A, 91(2): 241-46. https://doi.org/10.1007/s00339-008-4420-7. DOI: https://doi.org/10.1007/s00339-008-4420-7

Huang, Lanlan, Xiulan Weng, Zuliang Chen, Mallavarapu Megharaj y Ravendra Naidu. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117(enero): 801-4. https://doi.org/10.1016/j.saa.2013.09.054. DOI: https://doi.org/10.1016/j.saa.2013.09.054

Iravani, Siavash. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638. https://doi.org/10.1039/C1GC15386B. DOI: https://doi.org/10.1039/c1gc15386b

Kanagasubbulakshmi, S. y K. Kadirvelu. (2017). Green synthesis of iron oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Science Journal, 2(4): 422. https://doi.org/10.14429/dlsj.2.12277. DOI: https://doi.org/10.14429/dlsj.2.12277

Kanichi. y Ahmed. (2018). Green metal nanoparticles, characterization and applications of nanoparticles. green synthesis, characterization and applications of nanoparticles. https://doi.org/10.1016/c2017-0-02526-0. DOI: https://doi.org/10.1002/9781119418900

Karade, V. C., T. D. Dongale, Subasa C. Sahoo, P. Kollu, A. D. Chougale, P. S. Patil y P. B. Patil. (2018). Effect of reaction time on structural and magnetic properties of greens ynthesized magnetic nanoparticles. Journal of Physics and Chemistry of Solids, 120(septiembre): 161-66. https://doi.org/10.1016/j.jpcs.2018.04.040. DOI: https://doi.org/10.1016/j.jpcs.2018.04.040

Khalilzadeh, Mohammad A., Somayeh Tajik, Hadi Beitollahi y Richard A. Venditti. (2020). Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): Investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Industrial & Engineering Chemistry Research, 59(10): 4219-28. https://doi.org/10.1021/acs.iecr.9b06214. DOI: https://doi.org/10.1021/acs.iecr.9b06214

Khan, Ibrahim, Khalid Saeed y Idrees Khan. (2019). Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry, 12(7): 908-31. https://doi.org/10.1016/j.arabjc.2017.05.011. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Liu, Hongyu, Huan Zhang, Jie Wang y Junfu Wei. (2020). Effect of temperature on the size of biosynthesized silver nanoparticles: deep insight into microscopic kinetics analysis. Arabian Journal of Chemistry, 13(1): 1011-19. https://doi.org/10.1016/j.arabjc.2017.09.004. DOI: https://doi.org/10.1016/j.arabjc.2017.09.004

Malik, Parth, Ravi Shankar, Vibhuti Malik, Nitin Sharma y Tapan Kumar Mukherjee. (2014). Green chemistry based benign routes for nanoparticle synthesis. Journal of Nanoparticles, 2014: 1-14. https://doi.org/10.1155/2014/302429. DOI: https://doi.org/10.1155/2014/302429

Mandloi, Rakhi, Anamika Jain y Bindiya Sharma. (2021). Green synthesis of iron oxide (Fe2O3 ) nanoparticles using Neolamarckia cadamba leaves extract and photocatalytic degradation of malachite green. International Journal of Innovative Science and Research Technology.

Marslin, Gregory, Karthik Siram, Qaisar Maqbool, Rajendran Selvakesavan, Dariusz Kruszka, Piotr Kachlicki y Gregory Franklin. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11(6): 940. https://doi.org/10.3390/ma11060940. DOI: https://doi.org/10.3390/ma11060940

Moran, Jose F., Robert V. Klucas, Renée J. Grayer, Joaquin Abian y Manuel Becana. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22(5): 861-70. https://doi.org/10.1016/S0891-5849(96)00426-1. DOI: https://doi.org/10.1016/S0891-5849(96)00426-1

Nasrollahzadeh, Mahmoud, S. Mohammad Sajadi, Mohaddeseh Sajjadi y Zahra Issaabadi. (2019). Applications of nanotechnology in daily life. Interface Science and Technology, 28: 113-43. Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00004-3. DOI: https://doi.org/10.1016/B978-0-12-813586-0.00004-3

Ndiaye, Edouard Mbarick, Y. El Idrissi Yousra, Sow Alioune, Nicolas Cyrille Ayessou, Hicham Harhar, Mady Cisse y Mohamed Tabyaoui. (2021). Secondary metabolites and antioxidant activity of different parts of the baobab fruit (<I>Adansonia Digitata</I> L.). Food and Nutrition Sciences, 12(07): 732-41. https://doi.org/10.4236/fns.2021.127055. DOI: https://doi.org/10.4236/fns.2021.127055

Nnadozie, Ebenezer C. y Peter A. Ajibade. (2020). Green synthesis and characterization of magnetite (Fe3O4 ) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Materials Letters, 263(marzo): 127145. https://doi.org/10.1016/j.matlet.2019.127145. DOI: https://doi.org/10.1016/j.matlet.2019.127145

Pabón-Guerrero, Santiago Eduardo, Ricardo Benítez-Benítez, Rodrigo Andrés Sarria-Villa y José Antonio. (2021). Synthesis of iron oxide nanoparticles using aqueous extract de Eucalyptus grandis. DYNA, 8(0), 16220-226. Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v88n216.89031. DOI: https://doi.org/10.15446/dyna.v88n216.89031

Pal, Gaurav, Priya Rai y Anjana Pandey. (2019). Green synthesis of nanoparticles: a greener approach for a cleaner future. Green Synthesis, Characterization and Applications of Nanoparticles, 1-26. Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00001-0. DOI: https://doi.org/10.1016/B978-0-08-102579-6.00001-0

Pan, Zibin, Yuman Lin, Binoy Sarkar, Gary Owens y Zuliang Chen. (2019). Green synthesis of iron nanoparticles using red peanut skin extract: synthesis mechanism, characterization and effect of conditions on chromium removal. Journal of Colloid and Interface Science, 558 (noviembre): 106-14. https://doi.org/10.1016/j.jcis.2019.09.106. DOI: https://doi.org/10.1016/j.jcis.2019.09.106

Parajuli, Kshama, Aravind Kumar Sah y Hari Paudyal. (2020). Green synthesis of magnetite nanoparticles using aqueous leaves extracts of Azadirachta indica and its application for the removal of As(V) from water. Green and Sustainable Chemistry, 16. DOI: https://doi.org/10.4236/gsc.2020.104009

Prakash, Dhan y Neeraj Kumar. (2011). Cost effective natural antioxidants. En Joe K. Gerald, Ronald Ross Watson y Victor R. Preedy (eds.), Nutrients, dietary supplements, and nutriceuticals. Totowa, N. J.: Humana Press, 163-87. https:// doi.org/10.1007/978-1-60761-308-4_12. DOI: https://doi.org/10.1007/978-1-60761-308-4_12

Rajan, Ramachandran, Krishnaraj Chandran, Stacey L. Harper, Soon-Il Yun y P. Thangavel Kalaichelvan. (2015). Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products, 70(agosto): 356-73. https://doi.org/10.1016/j.indcrop.2015.03.015. DOI: https://doi.org/10.1016/j.indcrop.2015.03.015

Raveendran, Poovathinthodiyil, Jie Fu y Scott L. Wallen. (2003). Completely “green” synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 125(46): 13940-41. https://doi.org/10.1021/ja029267j. DOI: https://doi.org/10.1021/ja029267j

Shah, Monaliben, Derek Fawcett, Shashi Sharma, Suraj Tripathy y Gérrard Poinern. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11): 7278-7308. https://doi.org/10.3390/ma8115377. DOI: https://doi.org/10.3390/ma8115377

Shamaila, Sajjad, Ahmed Khan Leghari Sajjad, Najam ul Athar Ryma, Sidra Anis Farooqi, Nyla Jabeen, Sania Majeed y Iqra Farooq. (2016). Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Applied Materials Today, 5: 150-99. https://doi.org/10.1016/j.apmt.2016.09.009. DOI: https://doi.org/10.1016/j.apmt.2016.09.009

Shou, Qinghui, Chen Guo, Liangrong Yang, Lianwei Jia, Chunzhao Liu y Huizhou Liu. (2011). Effect of PH on the single-step synthesis of gold nanoparticles using PEO–PPO–PEO triblock copolymers in aqueous media. Journal of Colloid and Interface Science, 363(2): 481-89. https://doi.org/10.1016/j.jcis.2011.07.021. DOI: https://doi.org/10.1016/j.jcis.2011.07.021

Singh, Jagpreet, Tanushree Dutta, Ki Hyun Kim, Mohit Rawat, Pallabi Samddar y Pawan Kumar. (2018). “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1): 1-24. https://doi.org/10.1186/s12951-018-0408-4. DOI: https://doi.org/10.1186/s12951-018-0408-4

Sirdeshpande, Karthikey Devadatta, Anushka Sridhar, Kedar Mohan Cholkar y Raja Selvaraj. (2018). Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and Their photocatalytic degradation of malachite green dye. Applied Nanoscience, 8(4): 675-83. https://doi.org/10.1007/s13204-018-0698-8. DOI: https://doi.org/10.1007/s13204-018-0698-8

Song, Jae Yong y Beom Soo Kim. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1): 79-84. https://doi.org/10.1007/s00449-008-0224-6. DOI: https://doi.org/10.1007/s00449-008-0224-6

Stankus, Dylan P., Samuel E. Lohse, James E. Hutchison y Jeffrey A. Nason. (2011). Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environmental Science & Technology, 45(8): 323844. https://doi.org/10.1021/es102603p. DOI: https://doi.org/10.1021/es102603p

Vega-Chacón, Jaime, Gino Picasso, Luis Avilés-Félix y Miguel Jafelicci. (2016). Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(1): 015014. https://doi.org/10.1088/2043-6262/7/1/015014. DOI: https://doi.org/10.1088/2043-6262/7/1/015014

Veisi, Hojat, Lida Mohammadi, Saba Hemmati, Taiebeh Tamoradi y Pourya Mohammadi. (2019). In situ immobilized silver nanoparticles on Rubia tinctorum extract-coated ultrasmall iron oxide nanoparticles: an efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega, 4(9): 13991-3. https://doi.org/10.1021/acsomega.9b01720. DOI: https://doi.org/10.1021/acsomega.9b01720

Wang, Zhiqiang. (2013). Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustainable Chemistry & Engineering, 1(12): 1551-54. https://doi.org/10.1021/sc400174a. DOI: https://doi.org/10.1021/sc400174a

Wang, Zhiqiang, Cheng Fang y Megharaj Mallavarapu. (2015). Characterization of iron– polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environmental Technology & Innovation, 4(octubre): 92-97. https://doi.org/10.1016/j.eti.2015.05.004. DOI: https://doi.org/10.1016/j.eti.2015.05.004

Weng, Xiulan, Li Ma, Mengyu Guo, Yaying Su, Rajarathnam Dharmarajan y Zuliang Chen. (2018). Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by Euphorbia cochinchinensis extract. Chemical Engineering Journal, 353(diciembre): 482-89. https://doi.org/10.1016/j.cej.2018.07.162. DOI: https://doi.org/10.1016/j.cej.2018.07.162