Interacciones de nanoestructuras sobre óxido de grafeno

Palabras clave: grafeno oxidado, nanopartículas, dióxido de titanio, citotoxicidad, SERS

Resumen

En el comienzo de la historia del grafeno, el óxido de grafeno representaba únicamente un paso intermedio en la metodología para la obtención de láminas de grafeno. Sin embargo, resultados posteriores de la investigación de este material mostraron que el óxido de grafeno exhibe una estructura con defectos y grupos funcionales que le confieren propiedades únicas. Dada la versatilidad de su superficie, se han propuesto distintas vías de funcionalización que han resultado en la obtención de gran variedad de materiales híbridos. En este trabajo, presentamos la obtención y caracterización de tres materiales funcionalizados basados en láminas de óxido de grafeno decoradas con nanopartículas de plata, dióxido de titanio e hidroxiapatita. Estas nanoestructuras fueron caracterizadas mediante difracción de rayos X, espectroscopia Raman y microscopia electrónica de transmisión. De forma particular se estudió la mejora en las propiedades térmicas del grafeno oxidado-nanopartículas de plata mediante análisis termogravimétrico (TGA), la mejora de las señales Raman mediante el mecanismo químico de SERS en el material decorado con dióxido de titanio y se realizó un ensayo de viabilidad celular MTT, en el que se observó que no presentaba citotoxicidad el grafeno oxidado decorado con hidroxiapatita obtenido al usar urea para la precipitación del biocerámico.

Citas

Ajala, O. J., Tijani, J. O., Bankole, M. T. y Abdulkareem, A. S. (2022). A critical review on graphene oxide nanostructured material: properties, synthesis, characterization and application in water and wastewater treatment. Environmental Nanotechnology, Monitoring & Management, 18, 100673. https://doi.org/10.1016/j.enmm.2022.100673.

Amir, M. N. I., Halilu, A., Julkapli, N. M. y Ma’amor, A. (2020). Gold-graphene oxide nanohybrids:a review on their chemical catalysis. Journal of Industrial and Engineering Chemistry, 83: 1-13. https://doi.org/10.1016/j.jiec.2019.11.029.

Arif, A. F., Balgis, R., Ogi, T., Iskandar, F., Kinoshita, A., Nakamura, K. y Okuyama, K. (2017). Highly conductive nano-sized Magnéli phases titanium oxide (TiO x ). Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-03509-y.

Ayala-Fonseca, A., Amieva, E. J. C., Rodríguez-González, C., Loske, A. M., Fernández, F., De Luna Bugallo, A., Romero, V. H. y Salas, P. (2022). Highly dispersible and fluorescent graphene-based materials obtained by underwater shock wave-induced oxidative cleavage. FlatChem, 32, 100338. https://doi.org/10.1016/j.flatc.2022.100338.

Ayala‐Fonseca, L. A., Amieva, E. J. ‐C., Rodriguez‐Gonzalez, C., Angeles‐Chavez, C., De la Rosa, E., Castaño, V. M. y Salas, P. (2020). Enhanced Raman effect of solvothermal synthesized reduced graphene oxide/titanium dioxide nanocomposites. ChemistrySelect, 5(13): 3789-3797. https://doi.org/10.1002/slct.202000335.

Bao, Y., Tian, C., Yu, H., He, J., Song, K., Guo, J., Zhou, X., Zhuo, O. y Liu, S. (2022). In situ green synthesis of graphene oxide-silver nanoparticles composite with using gallic acid. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.905781.

Berger, M. (2022). Graphene – all you need to know. https://www.nanowerk.com/what_is_graphene.php.

Borges, K. A., Santos, L. M., Paniago, R. M., Barbosa Neto, N. M., Schneider, J., Bahnemann, D. W., Patrocinio, A. O. T. y Machado, A. E. H. (2016). Characterization of a highly efficient N-doped TiO2 photocatalyst prepared: Via factorial design. New Journal of Chemistry, 40(9): 7846-7855. https://doi.org/10.1039/c6nj00704j.

Calderón-Jiménez, B., Johnson, M. E., Montoro Bustos, A. R., Murphy, K. E., Winchester, M. R. y Vega Baudrit, J. R. (2017). Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry, 5. https://doi.org/10.3389/fchem.2017.00006.

Chen, J., Liu, B., Gao, X. y Xu, D. (2018). A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Advances, 8(49): 28048-28085. https://doi.org/10.1039/C8RA04205E.

Cho, H.-W., Liao, K.-L., Yang, J.-S. y Wu, J.-J. (2018). Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film. Applied Surface Science, 440: 125-132. https://doi.org/10.1016/J.APSUSC.2018.01.139.

Chung, I.-M., Park, I., Seung-Hyun, K., Thiruvengadam, M. y Rajakumar, G. (2016). Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Research Letters, 11(1): 40. https://doi.org/10.1186/s11671-016-1257-4.

Dhamodharan, D., Ghoderao, P. P., Dhinakaran, V., Mubarak, S., Divakaran, N. y Byun, H.-S. (2022). A review on graphene oxide effect in energy storage devices. Journal of Industrial and Engineering Chemistry, 106: 20-36. https://doi.org/10.1016/j.jiec.2021.10.033.

Draghi, C. (2022). Los rusos del grafeno. https://exactas.uba.ar/los-rusos-del-grafeno/.

Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2): 47-57. https://doi.org/10.1016/J.SSC.2007.03.052.

Hardwick, L. J., Holzapfel, M., Novák, P., Dupont, L. y Baudrin, E. (2007). Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation. Electrochimica Acta, 52(17): 5357-5367. https://doi.org/10.1016/J.ELECTACTA.2007.02.050.

Huang, G., Lu, C.-H. y Yang, H.-H. (2019). Magnetic nanomaterials for magnetic bioanalysis. En Novel nanomaterials for biomedical, environmental and energy applications, 89-109. Elsevier. https://doi.org/10.1016/B978-0-12-814497-8.00003-5.

Iravani, S., Korbekandi, H., Mirmohammadi, S. V y Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6): 385-406. http://www.ncbi.nlm.nih.gov/pubmed/26339255.

Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Kapica-Kozar, J., Colbeau-Justin, C., Mendez Medrano, M. G., y Morawski, A. W. (2017). Graphene oxide-TiO2 and reduced graphene oxide-TiO2 nanocomposites: Insight in charge-carrier lifetime measurements. Catalysis Today, 287: 189-195. https://doi.org/10.1016/J.CATTOD.2016.11.008.

Li, M., Xiong, P., Yan, F., Li, S., Ren, C., Yin, Z., Li, A., Li, H., Ji, X., Zheng, Y. y Cheng, Y. (2018). An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioactive Materials, 3(1): 1-18. https://doi.org/10.1016/j.bioactmat.2018.01.001.

Luo, Y., Li, M., Hu, G., Tang, T., Wen, J., Li, X., y Wang, L. (2018). Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Materials Research Bulletin, 97: 428-435. https://doi.org/10.1016/J.MATERRESBULL.2017.09.038.

Mamaghani, A. H., Haghighat, F. y Lee, C.-S. (2019). Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere, 219: 804-825. https://doi.org/10.1016/j.chemosphere.2018.12.029.

Nam, C. T., Yang, W.-D. y Duc, L. M. (2013). Study on photocatalysis of TiO 2 nanotubes prepared by methanol-thermal synthesis at low temperature. Bulletin of Materials Science, 36(5): 779-788. https://doi.org/10.1007/s12034-013-0546-0.

PA, Naina Mohamed, S., Singaravelu, D. L., Brindhadevi, K., y Pugazhendhi, A. (2022). A review on graphene / graphene oxide supported electrodes for microbial fuel cell applications: Challenges and prospects. Chemosphere, 296, 133983. https://doi.org/10.1016/j.chemosphere.2022.133983.

Pop, E., Varshney, V. y Roy, A. K. (2012). Thermal properties of graphene: fundamentals and applications. MRS Bulletin, 37(12): 1273-1281. https://doi.org/10.1557/mrs.2012.203.

Pougin, A., Lüken, A., Klinkhammer, C., Hiltrop, D., Kauer, M., Tölle, K., Havenith-Newen, M., Morgenstern, K., Grünert, W., Muhler, M. y Strunk, J. (2017). Probing oxide reduction and phase transformations at the Au-TiO2 interface by vibrational spectroscopy. Topics in Catalysis, 60(19-20): 1744-1753. https://doi.org/10.1007/s11244-017-0851-8.

Rajender, G., Kumar, J. y Giri, P. K. (2018). Interfacial charge transfer in oxygen deficient TiO2-graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis. Applied Catalysis B: Environmental, 224: 960-972. https://doi.org/10.1016/J.APCATB.2017.11.042.

Rodríguez-González, C., Salas, P., López-Marín, L. M., Millán-Chiu, B. y De la Rosa, E. (2018). Hydrothermal synthesis of graphene oxide/multiform hydroxyapatite nanocomposite: its influence on cell cytotoxicity. Materials Research Express, 5(12), 125023. https://doi.org/10.1088/2053-1591/aae29c.

Rodríguez‐González, C., Velázquez‐Villalba, P., Salas, P., y Castaño, V. M. (2016). Green synthesis of nanosilver‐decorated graphene oxide sheets. IET Nanobiotechnology, 10(5): 301-307. https://doi.org/10.1049/iet-nbt.2015.0043.

Sanchez, V. C., Jachak, A., Hurt, R. H. y Kane, A. B. (2012). Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chemical Research in Toxicology, 25(1): 15-34. https://doi.org/10.1021/tx200339h.

Seifalian, A. y Alexander, B. (2022). Graphene oxide and biological properties. https://encyclopedia.pub/entry/history/show/22459.

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T. y Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7): 1558-1565. https://doi.org/10.1016/J.CARBON.2007.02.034.

Stankovich, S., Piner, R. D., Nguyen, S. B. T. y Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44(15): 3342-3347. https://doi.org/10.1016/j.carbon.2006.06.004.

Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P. y Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 195: 145-154. https://doi.org/10.1016/j.elspec.2014.07.003.

Szcześ, A., Hołysz, L. y Chibowski, E. (2017). Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science, 249: 321-330. https://doi.org/10.1016/j.cis.2017.04.007.

Tayel, A., Ramadan, A., El Seoud, O., Tayel, A., Ramadan, A. R. y El Seoud, O. A. (2018). Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts, 8(11): 491. https://doi.org/10.3390/catal8110491.

Vega-Baudrit, J., Gamboa, S. M., Rojas, E. R. y Martinez, V. V. (2019). Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. International Journal of Biosensors & Bioelectronics, 5(5). https://doi.org/10.15406/ijbsbe.2019.05.00172.

Walton, R. I. (2011). Solvothermal synthesis of cerium oxides. Progress in Crystal Growth and Characterization of Materials, 57(4): 93-108. https://doi.org/10.1016/j.pcrysgrow.2011.10.002.

Warren, B. E. (1941). X-ray diffraction in random layer lattices. Physical Review, 59(9): 693-698. https://doi.org/10.1103/PhysRev.59.693.

Yan, J., Wu, G., Guan, N., Li, L., Li, Z. y Cao, X. (2013). Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978. https://doi.org/10.1039/c3cp50927c.

Ye Cong, Jinlong Zhang, Feng Chen y Masakazu Anpo. (2007). Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. https://doi.org/10.1021/JP0685030.

Yin, S., Fujishiro, Y., Wu, J., Aki, M. y Sato, T. (2003). Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. Journal of Materials Processing Technology, 137(1-3): 45-48. https://doi.org/10.1016/S0924-0136(02)01065-8.

Zhang, Y., Wu, W., Zhang, K., Liu, C., Yu, A., Peng, M. y Zhai, J. (2016). Raman study of 2D anatase TiO2 nanosheets. Phys. Chem. Chem. Phys., 18(47): 32178–32184. https://doi.org/10.1039/C6CP05496J.

Zhou, A., Bai, J., Hong, W. y Bai, H. (2022). Electrochemically reduced graphene oxide: preparation, composites, and applications. Carbon, 191: 301-332. https://doi.org/10.1016/j.carbon.2022.01.056.

Zhou, Q., Zhong, Y.-H., Chen, X., Wang, Y., Huang, X.-J. y Wu, Y.-C. (2016). Graphene-TiO2 functional nanocomposite: from synthesis to applications. Journal of Nanoscience and Nanotechnology, 16(9): 9327-9345. https://doi.org/10.1166/jnn.2016.12454.

Publicado
2023-02-21
Cómo citar
Rodríguez-González, C., Ayala-Fonseca, L., & Salas Castillo, P. (2023). Interacciones de nanoestructuras sobre óxido de grafeno. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(31), 1e-23e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69765