Síntesis de nanocompuestos oro-grafeno para la cuantificación electroquímica de peróxido de hidrógeno y glucosa

  • Salvador Fernández Centro de Investigación en Química Aplicada, Laboratorio Nacional de Materiales Grafénicos, Saltillo, Coahuila https://orcid.org/0000-0001-8858-1644
  • Edgar Cuara Centro de Investigación en Química Aplicada, Laboratorio Nacional de Materiales Grafénicos, Saltillo, Coahuila https://orcid.org/0000-0002-0223-3137
  • Maiby Valle Orta Centro de Investigación en Química Aplicada, Laboratorio Nacional de Materiales Grafénicos, Saltillo, Coahuila https://orcid.org/0000-0003-4763-3107
  • Uriel Alejandro Sierra Gómez Centro de Investigación en Química Aplicada, Laboratorio Nacional de Materiales Grafénicos, Saltillo, Coahuila https://orcid.org/0000-0003-3440-7119
Palabras clave: Nanopartículas de oro, grafeno, sensor, peróxido de hidrógeno, glucosa

Resumen

La cuantificación electroquímica de biomarcadores en fluidos frecuentemente emplea nanopartículas metálicas como sustratos de detección. El desarrollo de materiales de cuantificación ha evolucionado en las últimas décadas con la incorporación de materiales de grafeno a los sistemas de medición, generando variantes de compuestos de grafeno-nanometales, Los materiales compuestos aprovechan la gran conductividad electrónica del grafeno y el aumento en la sensibilidad y selectividad que les confiere. El óxido de grafeno y productos reducidos de éste, se han usado tradicionalmente en la manufactura de compuestos de grafeno-nanopartículas metálicas. La tendencia se explica por la relativa facilidad de síntesis de los materiales oxidados de grafeno, sin embargo, esta facilidad tiene como inconveniente la pérdida de propiedades eléctricas de los materiales sintetizados y la posible disminución de sus características de detección. Para evitar estas restricciones, idealmente se deberían de usar como sustratos materiales de grafeno no oxidados, sin embargo, su manufactura no es sencilla. Reportamos aquí un método de preparación de nanoplaquetas de grafeno prístino y su fácil conversión a compuestos decorados con nanopartículas de oro. Describimos el uso de los compuestos como sustratos útiles para la cuantificación electroquímica de glucosa y peróxido de hidrógeno en fluidos.

Citas

Bockris, J. O’M. y Oldfield, L. (1955). The oxidation-reduction reactions of hydrogen peroxide at inert metal electrodes and mercury cathodes. Transactions of the faraday society, 51: 249 https://doi.org/10.1039/TF9555100249.

Chang, Gang, Honghui Shu, Kai Ji, Munetaka Oyama, Xiong Liu, Yunbin He. (2014). Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Applied Surface Science, 288: 524-529. https://doi.org/10.1016/j.apsusc.2013.10.064.

Cheng, Ta-Ming, Ting-Kai Huang, Huang-Kai Lin, Sze-Ping Tung, Yu-Liang Chen, Chi-Young Lee y Hsin-Tien Chiu. (2010). (110)-Exposed gold nanocoral electrode as low onset potential selective glucose sensor. Applied Materials Interfaces, 2(10): 2773-2780. https://doi.org/10.1021/am100432a.

Dhara, Keerthy, T. Ramachandran, Bipin G. Nair, T.G. (2016). Satheesh Babu Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 764: 64-70. https://doi.org/10.1016/j.jelechem.2016.01.011.

Felix, Sathiyanathan, Andrews Nirmala Grace, Ramasamy Jayavel. (2018). Sensitive electrochemical detection of glucose based on Au-CuO nanocomposites. Journal of Physics and Chemistry of Solids, 122: 255-260. https://doi.org/10.1016/j.jpcs.2018.06.038.

Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2),: 47-57. https://doi.org/10.1016/j.ssc.2007.03.052.

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97(18). https://doi.org/10.1103/PhysRevLett.97.187401.

Fievet, F., Lagier, J. P., Figlarz, M. (1989). Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bulletin, 14(12): 29-34. https://doi.org/10.1557/S0883769400060930.

Gougis, Maxime, Amel Tabet-Aoul, Dongling Ma, Mohamed Mohamedi. (2014). Laser synthesis and tailor-design of nanosized gold onto carbon nanotubes for non-enzymatic electrochemical glucose sensor. Sensors and Actuators B. 193: 363-369. https://doi.org/10.1016/j.snb.2013.12.008.

Han, Tingting, Yuan Zhang, Jiaqiang Xu, Junping Dong, Liu, Chung-Chiun. (2015). Monodisperse AuM (M = Pd, Rh, Pt) bimetallic nanocrystals for enhanced electrochemical detection of H2O2. Sensors and Actuators B., 207: 404-412. https://doi.org/10.1016/j.snb.2014.10.028.

Hebié, Seydou, Teko W. Napporn, Claudia Morais y K. Boniface Kokoh. (2016). Size-dependent electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction. Chem Phys. Chem., 17: 1454-1462. https://doi.org/10.1002/cphc.201600065.

Hrapovic, Sabahudin, Yali Liu, Keith B. Male y John H. T. Luong. (2004). Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 76: 1083-1088. https://doi.org/10.1021/ac035143t.

Huq, A. K. M. S., A.C., Makrides. (1965). Hydrogen peroxide reactions on gold electrodes. Journal of the Electrochemical Society, 112(7): 756. https://doi.org/10.1149/1.2423684.

Ismail, Nur Syakimah, Quynh Hoa Le, Hiroyuki Yoshikawa, Masato Saito. (2014). Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon – gold nanoparticle hybrid. Electrochimica Acta, 146: 98-105. https://doi.org/10.1016/j.electacta.2014.08.123.

Jeong, Hun, Dang Mao Nguyen, Min Sang Lee, Hong Gun Kim, Sang Cheol Ko, Lee Ku Kwac. (2018). N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Materials Science and Engineering: C., 90(1): 38-45. https://doi.org/10.1016/j.msec.2018.04.039.

Kurihara, L., G. Chow y P. Schoen. (1995). Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials, 5(6): 607-613. https://doi.org/10.1016/0965-9773(95)00275-J.

Larew, Larry A., Johnson, Dennis C. (1989). Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. Interfacial Electrochemistry, 262(1-2): 167-182. https://doi.org/10.1016/0022-0728(89)80020-8.

Li, Yali, Jia Zhang, Hui Zhu, Fan Yang, Xiurong Yang. (2010). Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing. Electrochimica Acta, 55: 5123-5128. https://doi.org/10.1016/j.electacta.2010.04.017.

Li, Yanxiao, Jie Ma, Zhanfang Ma. (2013). Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochimica Acta, 108: 435-440. https://doi.org/10.1016/j.electacta.2013.06.141.

Liu, Wei, Karl Hiekel, René Hübner, Hanjun Sun, Adriana Ferancova, Mika Sillanpää. (2018). Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: Influences of bimetallic effect and silica support. Sensors and Actuators B., 255: 1325-1334. https://doi.org/10.1016/j.snb.2017.08.123.

Lv, Yajie, Fang Wang, Hui Zhu, Xiaorong Zou, Cheng-an Tao y Jianfang Wang. (2016). Electrochemically reduced graphene oxide-nafion/Au nanoparticle modified electrode for hydrogen peroxide sensing. Nanomater Nanotechnol., 6: 30. https://doi.org/10.5772/63519.

Malard, L. M., Pimenta, M. A., Dresselhaus, G. y Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5-6): 51-87. https://doi.org/10.1016/j.physrep.2009.02.003.

Manickam, Pandiaraj, Arti Vashist, Sekar Madhu, Mohanraj Sadasivam, Arunkumar Sakthivel, Ajeet Kaushik, Madhavan Nair. (2020). Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H2O2. Bioelectrochemistry, 131: 107373. https://doi.org/10.1016/j.bioelechem.2019.107373.

Narang, Jagriti, Nidhi Chauhan y C. S. Pundir. (2011). A non-enzymatic sensor for hydrogen peroxide based on polyaniline, multiwalled carbon nanotubes and gold nanoparticles modified Au electrode. Analyst, 136: 4460. https://doi.org/10.1039/C1AN15543A.

Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva y A. A. Firsov. (2004). Electric field effect in atomically thin carbón films. Science, 306(56969): 666-669. https://doi.org/10.1126/science.1102896.

Ocón, P., C. Alonso, R. Celdrán, J. González Velasco. (1986). Study of the electrooxidation of n-propanol on an Au electrode in basic medium. Interfacial Electrochemistry, 206(1-2): 179-196. https://doi.org/10.1016/0022-0728(86)90267-6.

Peng, Yu, Deqing Lin, J. Justin Gooding, Yuhua Xue, Liming Dai. (2018). Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon, 136: 329-336. https://doi.org/10.1016/j.carbon.2018.05.004.

Pogacean, Florina, Crina Socaci, Stela Pruneanu, Alexandru R. Biris, Maria Coros, Lidia Magerusan, Gabriel Katona, Rodica Turcu, Gheorghe Borodi. (2015). Graphene based nanomaterials as chemical sensors for hydrogen peroxide – A comparison study of their intrinsic peroxidase catalytic behavior. Sensors and Actuators B., 213: 474-483. https://doi.org/10.1016/j.snb.2015.02.124.

Ruiyi, Li, Zhang Juanjuan, Wang Zhouping, Li Zaijun, Liu Junkang, Gu Zhiguo, Wang Guanglia. (2015). Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sensors and Actuators B., 208: 421-428. https://doi.org/10.1016/j.snb.2014.11.004.

Shu, Honghui, Leilei Cao, Gang Chang, Hanping He, Yuting Zhang, Yunbin He. (2014). Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochimica Acta, 132: 524-532. https://doi.org/10.1016/j.electacta.2014.04.031.

Tang, B., Guoxin, H. y Gao, H. (2010). Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews, 45(5): 369-407. https://doi.org/10.1080/05704928.2010.483886.

Thanh, Tran Duy, Jayaraman Balamurugan, Seung Hee Lee, Nam Hoon Kim, Joong Hee Lee. (2016). Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics, 85: 669-678. https://doi.org/10.1016/j.bios.2016.05.075.

Thi, M.L.N., V.T. Pham, Q.B. Bui, P.H. Ai-Le, H.-T. Nhac-Vu. (2020). Novel nanohybrid of blackberry-like gold structures deposited graphene as a free-standing sensor for effective hydrogen peroxide detection. Journal of Solid State Chemistry, 286: 121299. https://doi.org/10.1016/j.jssc.2020.121299.

Thiagarajan, Soundappan, Buo Wei Su, Shen Ming Chen. Nano TiO2-Au-KI film sensor for the electrocatalytic oxidation of hydrogen peroxide. Sensors and Actuators B: Chemical, 136(2): 464-471. https://doi.org/10.1016/j.snb.2008.11.009.

Tian, Taolei, Junping Dong, Jiaqiang Xu. (2016). Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose. Microchimica Acta, 183: 1925-1932. https://doi.org/10.1007/s00604-016-1835-2.

Wang, Xiaojuan, Xinli Guo, Jian Chen, Chuang Ge, Hongyi Zhang, Yuanyuan Liu, Li Zhao, Yao Zhang, Zengmei Wang, Litao Sun. (2017). Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide. Journal of Materials Science and Technology, 33: 246-250. https://doi.org/10.1016/j.jmst.2016.11.029.

Won, Yu-Ho, Keon Huh, Lia A. Stanciu. (2011). Au nanospheres and nanorods for enzyme-free electrochemical biosensor applications. Biosensors and Bioelectronics, 26: 4514-4519. https://doi.org/10.1016/j.bios.2011.05.012.

Xue, Chenming, Chih-Chien Kung, Min Gao, Chung-Chiun Liu, Liming Dai, Augustine Urbas, Quan Li. (2015). Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor. Sensing and Bio-Sensing Research, 3: 7-11. https://doi.org/10.1016/j.sbsr.2014.10.008.

Xue, Kaiwen, Shenghai Zhou, Hongyan Shi, Xun Feng, Hua Xin, Wenbo Song. (2014). A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite. Sensors and Actuators B., 203: 412-416. https://doi.org/10.1016/j.snb.2014.07.018.

Yaping Wu; Wei Jiang; Yujie Ren; Weiwei Cai; Wi Hyoung Lee; Huifeng Li; Richard D. Piner; Cody W. Pope; Yufeng Hao; Hengxing Ji; Junyong Kang; Rodney S. Ruoff (2012). Tuning the doping type and level of graphene with different gold configurations. https://doi.org/10.1002/smll.201200520.

Yuan, Baiqing, Chunying Xu, Lin Liu, Yunfeng Shi, Sujuan Li, Renchun Zhang, Daojun Zhang. (2014). Polyethylenimine-bridged graphene oxide–gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sensors and Actuators B., 198: 55-61. https://doi.org/10.1016/j.snb.2014.03.014.

Zhang, Yue, Yujing Sun, Zhelin Liu, Fugang Xu, Kang Cui, Yan Shi, Zhiwei Wen, Zhuang Li. (2011). Au nanocages for highly sensitive and selective detection of H2O2. Journal of Electroanalytical Chemistry 656: 23-28. https://doi.org/10.1016/j.jelechem.2011.01.037.

Zheng, Xiaoming; Chen, Wei; Wang, Guang; Yu, Yayun; Qin, Shiqiao; Fang, Jingyue; Wang, Fei; Zhang, Xue-Ao (2015). The Raman redshift of graphene impacted by gold nanoparticles. AIPA Advances, 5(5): 057133. https://doi.org/10.1063/1.4921316.

Publicado
2023-02-20
Cómo citar
Fernández, S., Cuara, E., Valle Orta, M., & Sierra Gómez, U. (2023). Síntesis de nanocompuestos oro-grafeno para la cuantificación electroquímica de peróxido de hidrógeno y glucosa. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(31), 1e-20e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69768