Breve revisión sobre la síntesis de los nanomateriales más usados como soportes y catalizadores en diversas aplicaciones

  • C. E. Soto-Arteaga Centro de Investigación Científica y de Educación Superior de Ensenada, Programa de Posgrado en Nanociencias / Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0002-8405-0122
  • E. D. Gutiérrez-López Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0001-6135-9074
  • Y. Esqueda-Barrón Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0002-0049-371X
  • J. N. Díaz de León Centro de Investigación Científica y de Educación Superior de Ensenada, Programa de Posgrado en Nanociencias / Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología https://orcid.org/0000-0002-5828-8583
Palabras clave: nanocatalizadores, soportes, alúmina, Titania, óxido de cerio, síntesis

Resumen

El desarrollo de nanocatalizadores de alto rendimiento depende de la generación de sitios superficiales estables y activos a escala atómica mediante el control sistemático del tamaño, la forma y la composición química de metales y óxidos metálicos a nanoescala. En este trabajo se mencionan la síntesis y aplicación de nanomateriales basados principalmente en alúmina (Al2O3), Titania (TiO2) y algunos otros de menor uso como el óxido de cerio (CeO2). Asimismo, se describen brevemente sus características morfológicas, texturales y fases cristalográficas obtenidas. Se destaca la importancia de los métodos de síntesis en la morfología y estructura de las nanopartículas y cómo esto afecta a la actividad catalítica de los soportes y catalizadores preparados con ellas. 

Citas

Afanasiev, Pavel. (2018). Topotactic synthesis of size-tuned MoS2 inorganic fullerenes that allows revealing particular catalytic properties of curved basal planes. https://doi.org/10.1016/j.apcatb.2017.12.012.

Amendola, Vincenzo, Moreno Meneghetti. (2013). What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution. Physical Chemistry Chemical Physics, 15(9): 3027-46. The Royal Society of Chemistry: https://doi.org/10.1039/C2CP42895D.

Anjali Das, C. G., V. Ganesh Kumar, T. Stalin Dhas, V. Karthick, C. M. Vineeth Kumar. (2022). Nanomaterials in anticancer applications and their mechanism of action-a review. India Earth Science and Technology Cell (Marine Biotechnological Studies, 600119. https://doi.org/10.1016/j.nano.2022.102613.

Bagheri, Samira, Nurhidayatullaili Muhd Julkapli, Sharifah Bee, Abd Hamid. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. https://doi.org/10.1155/2014/727496.

Bamwenda, G. R., S. Tsubota, T. Nakamura, M. Haruta. (1997). The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catalysis Letters, 44(1/2): 83-87. https://doi.org/10.1023/A:1018925008633.

Bratlie, Kaitlin M., Hyunjoo Lee, Kyriakos Komvopoulos, Peidong Yang, Gabor A. Somorjai. (2007). Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Letters, 7(10): 3097-3101. https://doi.org/10.1021/nl0716000.

Busca, Guido. (2014). The surface of transitional aluminas: a critical review. Catalysis Today, 226: 2-13. https://doi.org/10.1016/j.cattod.2013.08.003.

Celaya, Christian A., Melissa Méndez-Galván, O. Castro-Ocampo, Leticia M. Torres-Martínez, Edith Luévano-Hipólito, Jorge Noé Díaz de León, Hugo A. Lara-García, Gabriela Díaz, Jesús Muñiz. (2022). Exploring the CO2 conversion into hydrocarbons via a photocatalytic process onto M-doped titanate nanotubes (M = Ni and Cu). Fuel, 324(febr.). https://doi.org/10.1016/j.fuel.2022.124440.

Chen, Xiaobo, Samuel S. Mao. (2006). Synthesis of titanium dioxide (TiO 2) nanomaterials. Journal of Nanoscience and Nanotechnology, 6 (4): 906-25. https://doi.org/10.1166/jnn.2006.160.

Dabbagh, Hossein A., Elham Rasti, Mohammad S. Yalfani, Francesc Medina. (2011). Formation of γ-alumina nanorods in presence of alanine. Materials Research Bulletin, 46(2). Elsevier Ltd: 271–77. https://doi.org/10.1016/j.materresbull.2010.10.011.

Demir-Cakan, Rezan, Niki Baccile, Markus Antonietti, Maria-Magdalena Titirici. (2022). Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. https://doi.org/10.1021/cm802141h. (Consultado, octubre 29, 2022).

Díaz de León, J. N., J. Antunes-García, G. Alonso-Núñez, T. A. Zepeda, D. H. Galvan, J. A. de los Reyes, S. Fuentes. (2018). Support effects of NiW hydrodesulfurization catalysts from experiments and DFT calculations. Applied Catalysis B: Environmental, 238(marzo): 480-90. Elsevier. https://doi.org/10.1016/j.apcatb.2018.07.059.

Díaz de León, J. N., J. R. Rodríguez, Joel Rojas, Y. Esqueda-Barrón, L. Cárdenas, R.K. Chowdari, Gabriel Alonso-Núñez, Sergio Fuentes-Moyado. (2019). new insight on the formation of sodium titanates 1D nanostructures and its application on CO2 hydrogenation. Frontiers in Chemistry, 7(nov.): 1-11. https://doi.org/10.3389/fchem.2019.00750.

Díaz de León, J. N., J. Rojas, D. Domínguez, Y. Esqueda-Barrón, J. M. Romo-Herrera, S. Fuentes-Moyado. (2021). The effect of shape and size of 1D and 0D titanium oxide nanorods in the photocatalytic degradation of red amaranth toxic dye. Nano-Structures and Nano-Objects, 26. Elsevier B. V.: 100738. https://doi.org/10.1016/j.nanoso.2021.100738.

Díaz de León, J. N., V. Petranovskii, J. A. de Los Reyes, G. Alonso-Núñez, T. A. Zepeda, Sergio Fuentes, J. L. García-Fierro. (2014). One dimensional (1D) γ-alumina nanorod linked networks: synthesis, characterization and application. Applied Catalysis A: General, 472: 1-10. https://doi.org/10.1016/j.apcata.2013.12.005.

Díaz de León, J. N., T. A. A. Zepeda, G. Alonso-Núñez, D. H. H. Galván, B. Pawelec, S. Fuentes. (2015). Insight of 1D γ-Al2O3 nanorods decoration by NiWS nanoslabs in ultra-deep hydrodesulfurization catalyst. Journal of Catalysis, 321(ene.): 51-61. Academic Press. https://doi.org/10.1016/j.jcat.2014.11.001.

Flytzani-Stephanopoulos, Maria. (2014). Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Accounts of Chemical Research, 47(3): 783-92. https://doi.org/10.1021/ar4001845.

Forsythe, Ryland C., Connor P. Cox, Madeleine K. Wilsey, Astrid M. Mü. (2021). Pulsed laser in liquids made nanomaterials for catalysis. https://doi.org/10.1021/acs.chemrev.0c01069.

Fu, Liangjie, Huaming Yang, Yuehua Hu, Di Wu, Alexandra Navrotsky. (2017). Tailoring mesoporous γ-Al2O3 properties by transition metal doping: a combined experimental and computational study. Chemistry of Materials, 29(3): 1338-49. https://doi.org/10.1021/acs.chemmater.6b05041.

Fu, Qi, Adam Weber, Maria Flytzani-stephanopoulos. (2001). Nanostructured Au – CeO2 catalysts for low-temperature water – Gas Shift. Catalysis Letters, 77(1): 87-95. https://link.springer.com/article/10.1023/A:1012666128812.

Fu, Yang, Benoit Pichon, François Devred, Michael L. Singleton, Sophie Hermans. (2022). Synthesis of spherical, rod, or chain ni nanoparticles and their structure – Activity relationship in glucose hydrogenation reaction. Journal of Catalysis, 415 (nov.): 63-76. https://doi.org/10.1016/j.jcat.2022.09.028.

Fujishima, Akira, Kanichi Honda. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358): 38-40. https://doi.org/10.1038/238038a0.

Ghampson, I. T., G Pecchi, J. L. G. Fierro, A. Videla, N. Escalona. (2017). Catalytic hydrodeoxygenation of anisole over Re-MoOx /TiO2 and Re-VOx /TiO2 catalysts. Applied Catalysis B: Environmental, 208: 60-74. https://doi.org/10.1016/j.apcatb.2017.02.047.

Gopal, Neeruganti O., Md Hussain Basha. (2018). TiO2 nano-flakes with high activity obtained from phosphorus doped TiO2 nanoparticles by hydrothermal method. Ceramics International, 44(18): 22129–34. Elsevier Ltd and Techna Group S.r.l. https://doi.org/10.1016/j.ceramint.2018.08.325.

Guo, Zhilei, Guohua Jing, Sara A. Tolba, Chung-Shin Yuan, Yu-Hua Li, Xiaowei Zhang, Zhiwei Huang, et al. (2023). Design and construction of an O-Au-O coordination environment in Au single atom-doped Ti 4+ defected TiO2 for an enhanced oxidative ability of lattice oxygen for Hg0 oxidation. Chemical Engineering Journal, 451: 138895. https://doi.org/10.1016/j.cej.2022.138895.

Haider, Adawiyah J., Zainab N. Jameel, Imad H. M. Al-Hussaini. (2019). Review on: titanium dioxide applications. Energy Procedia, 157: 17–29. Elsevier B.V. https://doi.org/10.1016/j.egypro.2018.11.159.

Hanková, Adéla, Anna Kuzminova, Jan Hanuš, Tereza Košutová, Pavel Solař, Jaroslav Kousal, Ondřej Kylián. (2022). Nanostructured and columnar vanadium and vanadium oxides films synthesized by means of magnetron-based gas aggregation source. Surface and Coatings Technology, 431 (febr.): 128015. https://doi.org/10.1016/j.surfcoat.2021.128015.

Ingebrethsen, Bradley J., Egon Matijević. (1980). Preparation of uniform colloidal dispersions by chemical reactions in aerosols–2. Spherical particles of aluminum hydrous oxide. Journal of Aerosol Science, 11(3): 271-80. https://doi.org/10.1016/0021-8502(80)90101-9.

Jayan, M. Arul, S. S. Dawn, G. G. Vinoth Kumar. (2020). Facile preparation of highly dispersed copper promoted cobalt catalyst supported on alumina nanospheres. https://doi.org/10.1016/j.matlet.2020.129221.

Jiang, Cong, Maohong Fan, Ge Gao, Wufeng Jiang, Xiaoshan Li, Cong Luo, Liqi Zhang, Fan Wu. (2022). Nanostructured AlOOH-A promising catalyst to reduce energy consumption for amine-based CO2 capture. Separation and Purification Technology, 303: 1383-5866. https://doi.org/10.1016/j.seppur.2022.122232.

Juárez-Moreno, Karla, J. Noé Díaz De León, Trino A. Zepeda, Rafael Vázquez-Duhalt, Sergio Fuentes. (2015). Oxidative transformation of dibenzothiophene by chloroperoxidase enzyme immobilized on (1D)-γ-Al2O3 nanorods. Journal of Molecular Catalysis B: Enzymatic. 115. Elsevier B.V.: 90–95. https://doi.org/10.1016/j.molcatb.2015.02.004.

Jun-Cheng, Li, Xiang Lan, Xu Feng, Wang Zhan-Wen, Wei Fei. (2006). Effect of hydrothermal treatment on the acidity distribution of γ-Al2O3 support. Applied Surface Science, 253(2): 766-70. https://doi.org/10.1016/j.apsusc.2006.01.003.

Kasuga, Tomoko, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, Koichi Niihara. (1999). Titania nanotubes prepared by chemical processing. Advanced Materials, 11(15): 1307-11. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H.

Kaur, Arshpreet, Bharat Bajaj, Ajeet Kaushik, Anju Saini, Dhiraj Sud. (2022). A review on template assisted synthesis of multi-functional metal oxide nanostructures: status and prospects. https://doi.org/10.1016/j.mseb.2022.116005.

Khajeh Talkhoncheh, Saeed, Mohammad Haghighi. (2015). Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina. https://doi.org/10.1016/j.jngse.2015.01.020.

Khdary, Nezar H., Alhanouf S. Alayyar, Latifah M. Alsarhan, Saeed Alshihri, Mohamed Mokhtar. (2022). Metal oxides as catalyst/supporter for CO2 capture and conversion, review. Catalysts, 12(3), 300; https://doi.org/10.3390/catal12030300.

Komanicky, Vladimir, Hakim Iddir, Kee-Chul Chang, Andreas Menzel, Goran Karapetrov, Daniel Hennessy, Peter Zapol, and Hoydoo You. (2009). Shape-dependent activity of platinum array catalyst. Journal of the American Chemical Society, 131(16): 5732-33. https://doi.org/10.1021/ja900459w.

László, Balázs, Kornélia Baán, Zsuzsa Ferencz, Gábor Galbács, Albert Oszkó, Zoltán Kónya, János Kiss, András Erdőohelyi. (2018). Gold size effect in the thermal-induced reaction of CO2 and H2 on titania- and titanate nanotube-supported gold catalysts. Journal of Nanoscience and Nanotechnology, 19(1): 470-77. https://doi.org/10.1166/jnn.2019.15772.

Laurenti, Dorothée, Bo Phung-Ngoc, Charbel Roukoss, Elodie Devers, Karin Marchand, Laurence Massin, Laurent Lemaitre, Cristèle Legens, Anne Agathe Quoineaud, Michel Vrinat. (2013). Intrinsic potential of alumina-supported CoMo catalysts in HDS: comparison between Γc, Γt, and δ-alumina. Journal of Catalysis, 297(ene.): 165-75. https://doi.org/10.1016/j.jcat.2012.10.006.

Liu, Fang, Xiaohai Zheng, Jiebo Chen, Ying Zheng, Lilong Jiang. (2015). Controlling the synthesis and application of nanocrystalline spherical and ordered mesoporous alumina with high thermal stability. RSC Advances, 5(114): 93917-25. https://doi.org/10.1039/C5RA12111F.

Liu, Shanshan, Hao Wang, Ying Wei, Runduo Zhang, Sebastien Royer. (2019). Morphology-oriented ZrO2 -supported vanadium oxide for the NH3-SCR process: importance of structural and textural properties. ACS Applied Materials & Interfaces, 11(25): 22240-54. https://doi.org/10.1021/acsami.9b03429.

López-Rodríguez, L., Araiza, D. G., Arcos, D. G., Gómez-Cortés, A. y Díaz, G. (2022). Bimetallic Cu-Pt catalysts over nanoshaped ceria for hydrogen production via methanol. decomposition. Catalysis Today, 394-396(jul.): 486-498. https://doi.org/10.1016/j.cattod.2021.07.003.

Mai, Hao-Xin, Ling-Dong Sun, Ya-Wen Zhang, Rui Si, Wei Feng, Hong-Peng Zhang, Hai-Chao Liu, Chun-Hua Yan. (2005). Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. The Journal of Physical Chemistry B, 109(51): 24380–85. https://doi.org/10.1021/jp055584b.

Martín, Nancy, Margarita Viniegra, Rubicelia Vargas, Jorge Garza. (2021). Nanostructured oxides of transition metals with applications in catalysis. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 14(26): 1-16.

Matsuda, S., A. Kato. (1983). Titanium oxide based catalysts - A review. Applied Catalysis, 8(2): 149-65. https://doi.org/10.1016/0166-9834(83)80076-1.

Mendoza-Núñez, E. M., A. Solís-García, C. Ortiz-Domínguez, C. E. Soto-Arteaga, D. Domínguez, O. E. Contreras, S. Fuentes-Moyado, J. N. Díaz de León. (2022). Insight into alcohol transformation over binary Al2O3-Y2O3 mixed oxide nanoparticles. Applied Catalysis B: Environmental, mayo, 121567. https://doi.org/10.1016/J.APCATB.2022.121567.

Ota, Misaki, Yuichiro Hirota, Yoshiaki Uchida, Yasuhiro Sakamoto, Norikazu Nishiyama. (2018). Low temperature synthesized H2Ti3O7 nanotubes with a high CO2 adsorption property by amine modification. https://doi.org/10.1021/acs.langmuir.8b00317.

Ouyang, Yuge, Xiaofei Li, Fei Ding, Liuyang Bai, Fangli Yuan. (2020). Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma. Composites Science and Technology, 190: 108019. https://doi.org/10.1016/j.compscitech.2020.108019.

Over, Herbert. (2021). Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catalysis, 11(14): 8848-71. https://doi.org/10.1021/acscatal.1c01973.

Patiño-Guillén, Gerardo, Alan Arceta-Lozano, Jessica A. Falcón-Montes, Esmeralda García-Díaz, Jorge Noé Díaz de León, Rafael Vázquez-Duhalt, Guanhui Gao, Miguel Ángel Méndez-Rojas, Jessica Campos-Delgado. (2021). Simple in situ functionalization of carbon nanospheres. Nanotechnology, 32(8). IOP Publishing: 085602. https://doi.org/10.1088/1361-6528/abc8b3.

Peláez, Miguel, Nicholas T. Nolan, Suresh C. Pillai, Michael K. Seery, Polycarpos Falaras, Athanassios G. Kontos, Patrick S. M. Dunlop et al. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B, Environmental, 125: 331-49. Elsevier B.V. https://doi.org/10.1016/j.apcatb.2012.05.036.

Phung, Thanh Khoa, Loriana Proietti Hernández, Alberto Lagazzo, Guido Busca. (2015). Dehydration of ethanol over zeolites, silica alumina and alumina: lewis acidity, brønsted acidity and confinement effects. Applied Catalysis A: General, 493: 77-89. Elsevier B.V. https://doi.org/10.1016/j.apcata.2014.12.047.

Puga, Alberto V., Avelino Corma. (2018). Hydrogenation of CO2 on nickel–iron nanoparticles under sunlight irradiation. Topics in Catalysis, 61(18-19): 1810-19. Springer US. https://doi.org/10.1007/s11244-018-1030-2.

Romero-Núñez, Araceli, Antonio Gómez-Cortés, Hugo Tiznado, Gabriela Díaz. (2018). Ni-doped ceria nanorods for the WGS reaction: effect of Ni distribution in methane suppression. https://doi.org/10.1016/j.cattod.2018.09.009.

Safo, I. A., M. Werheid, C. Dosche, M. Oezaslan. (2019). The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Advances, 1(8): 3095-3106. Royal Society of Chemistry. https://doi.org/10.1039/C9NA00186G.

Sakashita, Y., T. Yoneda. (1999). Orientation of MoS2 clusters supported on two kinds of γ-Al2O3 single crystal surfaces with different indices. Journal of Catalysis, 185(2): 487-95. https://doi.org/10.1006/jcat.1999.2504.

Satterfield, Charles N. (1991). Heterogeneous Catalysis in Practice. EUA: McGraw-Hill.

Shi, Wei, Guangyan Xu, Xuewang Han, Yingjie Wang, Zhi Liu, Sen Xue, Nannan Sun et al. (2023). Nano-sized alumina supported palladium catalysts for methane combustion with excellent thermal stability. Journal of Environmental Sciences, 126: 333-47. https://doi.org/10.1016/j.jes.2022.04.030.

Shojaie-Bahaabad, M., E. Taheri-Nassaj. (2008). Economical synthesis of nano alumina powder using an aqueous sol-gel method. https://doi.org/10.1016/j.matlet.2008.03.012.

Song, Yuan Jun, Mingliang Wang, Xiao Yang Zhang, Jing Yuan Wu, Tong Zhang. (2014). Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of highyield silver nanospheres and nanowires. Nanoscale Research Letters, 9(1). Springer New York LLC. https://doi.org/10.1186/1556-276X-9-17.

Sun, Xiaoming, Yadong Li. (2003). Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry - A European Journal, 9(10): 2229-38. https://doi.org/10.1002/chem.200204394.

Tauster, S. J., S. C. Fung, R. T. K. Baker, J. A. Horsley. (1981). Strong interactions in supported-metal catalysts. Science, 211(4487): 1121-25. https://doi.org/10.1126/science.211.4487.1121.

Topsøe, Henrik, Bjerne S. Clausen, Franklin E. Massoth. (1996). Hydrotreating catalysis. Catalysis, 1-269. https://doi.org/10.1007/978-3-642-61040-0_1.

Trovarelli, A. y Llorca, J. (2017). Ceria catalysts at nanoscale: how do crystal shapes catalysis? ACS Catalysis, 7(7): 4716-4735. https://doi.org/10.1021/acscatal.7b01246.

Trueba, Monica, Stefano P. Trasatti. (2005). γ-alumina as a support for catalysts: a review of fundamental aspects. European Journal of Inorganic Chemistry, 17: 3393-3403. https://doi.org/10.1002/ejic.200500348.

Valadez-Rentería, Ernesto, Rafael Pérez-González, Christian Gómez-Solís, Luis Armando Díaz-Torres, Armando Encinas, Jorge Oliva, Vicente Rodríguez-González. (2023). A novel and stretchable carbon-nanotube/Ni@TiO2:W photocatalytic composite for the complete removal of diclofenac drug from the drinking water. Journal of Environmental Sciences, 126(abr.): 575–89. Elsevier. https://doi.org/10.1016/J.JES.2022.05.028.

Wang, Feng, Chuanhao Li, Ling-Dong Sun, Haoshuai Wu, Tian Ming, Jianfang Wang, Jimmy C. Yu, Chun-Hua Yan. (2011). Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. Journal of the American Chemical Society, 133(4): 1106-11. https://doi.org/10.1021/ja1095733.

Wang, Junlei, Kuan Wang, Zhen Hong He, Song Song Li, Rong Rong Zhang, Pengfei Guo, Weitao Wang, Yang Yang, Zhao Tie Liu. (2021). Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. Journal of Nanostructure in Chemistry, 0123456789. Springer Berlin Heidelberg. https://doi.org/10.1007/s40097-021-00445-2.

Wu, Z., Li, M. y Overbury, S. H. (2012). On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. Journal of Catalysis, 285(1): 61-73. Elsevier Inc. https://doi.org/10.1016/j.jcat.2011.09.01.

Xu, Run, Dingsheng Wang, Jiatao Zhang, Yadong Li. (2006). Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry – An Asian Journal, 1(6): 888–93. https://doi.org/10.1002/asia.200600260.

Yao, Ruwei, Jian Wei, Qingjie Ge, Jing Xu, Yu Han, Hengyong Xu, Jian Sun. (2021). Structure sensitivity of iron oxide catalyst for CO2 hydrogenation. Catalysis Today, 371(jul.): 134-41. https://doi.org/10.1016/j.cattod.2020.07.073.

Yuan, Quan, An-Xiang Yin, Chen Luo, Ling-Dong Sun, Ya-Wen Zhang, Wen-Tao Duan, Hai-Chao Liu, Chun-Hua Yan. (2008). Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. Journal of the American Chemical Society, 130(11): 3465-72. https://doi.org/10.1021/ja0764308.

Zhang, Lisha, Wenzhong Wang, Zhigang Chen, Lin Zhou, Haolan Xu, Wei Zhu. (2007). Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. Journal of Materials Chemistry, 17(24): 2526. https://doi.org/10.1039/b616460a.

Zhang, Shilan, Songsong Zhi, Hongju Wang, Jing Guo, Weihao Sun, Lu Zhang, Yi Jiang, Xiaguang Zhang, Kai Jiang, Dapeng Wu. (2023). Laser-assisted rapid synthesis of anatase/rutile TiO2 heterojunction with function-specified micro-zones for the effective photo-oxidation of sulfamethoxazole. Chemical Engineering Journal, 453: 139702. https://doi.org/10.1016/j.cej.2022.139702.

Zhang, Zhice, Josephine B. M. Goodall, Sonal Brown, Lisa Karlsson, Robin J. H. Clark, John L. Hutchison, I. U. Rehman, Jawwad A. Darr. (2010). Continuous hydrothermal synthesis of extensive 2D sodium titanate (Na2Ti3O7) nano-sheets. Dalton Transactions, 39(3): 711-14. https://doi.org/10.1039/b915699b.

Zhong, Zhuojie, Junxuan Li, Minyin Jian, Riyang Shu, Zhipeng Tian, Chao Wang, Ying Chen, Ning Shi, Yanxue Wu. (2023). Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2 catalyst: effect of TiO2 morphology. Fuel, 333. https://doi.org/10.1016/j.fuel.2022.126241.

Zhou, K., X. Wang, X. Sun, Q. Peng, Y. Li. (2005). Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 229(1): 206-12. https://doi.org/10.1016/j.jcat.2004.11.004.

Publicado
2023-05-23
Cómo citar
Soto-Arteaga, C., Gutiérrez-López, E., Esqueda-Barrón, Y., & Díaz de León, J. (2023). Breve revisión sobre la síntesis de los nanomateriales más usados como soportes y catalizadores en diversas aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(31), 1e-24e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69777