A biosensing platform based on graphene oxide and photoluminescent probes: advantages and perspectives

  • Diana Lorena Mancera Zapata Centro de Investigaciones en Óptica, A. C. León, Guanajuato, México. https://orcid.org/0000-0002-6370-9602
  • Eden Morales Narváez Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada, Biophotonic Nanosensors Laboratory. https://orcid.org/0000-0002-1536-825X
Palabras clave: wash-free biosensing, nanophotonics, graphene-related materials

Resumen

Biosensing systems are powerful biotechnological tools which are widely applied in medical and environmental settings. Herein, we provide an overview of a recently developed optical biosensing system based on the quenching abilities of graphene oxide and fluorescent bioprobes. This biosensing platform has been demonstrated to be a fast, cost-effective and reliable nanophotonic technology. In particular, it has been exploited to detect relevant analytes in real matrixes, including prostate specific E. coli and COVID-19 antibodies. Besides, this technology enabled the detection of sialidase in clinical samples to determine bacterial vaginosis. This biosensing system has recently been used to determine relevant information on the kinetics of proteins involved in the biorecognition process, everything performed in real-time and in a single step.

Citas

Amsel, R., Totten, P. A., Spiegel, C. A., Chen, K. C., Eschenbach, vD., and Holmes, K. K. (1983). Nonspecific vaginitis. Diagnostic Criteria and Microbial and Epidemiologic Associations. Am. J. Med., 74(1): 14-22.

Avila-Huerta M. D, Ortiz-Riaño, E. J., Mancera-Zapata, D. L., Cortés-Sarabia, K., and Morales-Narváez, Eden. (2021). Facile determination of Covid-19 seroconversion via nonradiative energy transfer. ACS Sens. https://doi.org/10.1021/acssensors.1c00795.

Avila-Huerta, M. D., Ortiz-Riaño, E. J., Mancera-Zapata, D. L., Morales-Narváez, E. (2020). Real-time photoluminescent biosensing based on graphene oxide-coated microplates: a rapid pathogen detection platform. Anal. Chem. 2020. https://doi.org/10.1021/acs.analchem.0c02200.

Cortés-Sarabia, K., Rodríguez-Nava, C., Medina-Flores, Y., Marta-Ruíz, O., López-Meza, J. E., Gómez-Cervantes, M. D., Parra- Rojas, I., Illades-Aguiar, B., Flores-Alfaro, E., and Vences-Velázquez, A. (2020). Production and characterization of a monoclonal antibody against the Sialidase of Gardnerella Vaginalis using a synthetic peptide in a MAP8 format. Appl. Microbiol. Biotechnol., 104: 6173-6183.

Forster, Th. (1946). Energiewanderung und Fluoreszenz. Naturwissenschaften, 33(6): 166-175. https://doi.org/10.1007/BF00585226.

Geim, A. K., Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3): 183-191. https://doi.org/10.1038/nmat1849.

Huang, A., Li, W., Shi, S., Yao, T. (2017). Quantitative fluorescence quenching on antibody-conjugated graphene oxide as a platform for protein sensing. Scientific Reports, 7(1): 40772. https://doi.org/10.1038/srep40772.

Li, D., Müller, M. B., Gilje, S., Kaner, R. B., Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3: 101. https://doi.org/10.1038/nnano.2007.451

Mancera-Zapata, Diana L. (2018). Reduction of graphene oxide and its impact on the performance of a biosensing system. Unpublished Master’s thesis. Centro de Investigaciones en Óptica, A.C. CIO Repositorio. http://cio.repositorioinstitucional.mx/jspui/handle/1002/1187.

Morales-Narváez, E., A. Merkoçi. (2012). Graphene oxide as an optical biosensing platform. Advanced materials, 24: 3298. [Front cover article, highly cited paper]. https://doi.org/10.1002/adma.201200373.

Morales-Narváez, E., Merkoçi, A. (2018). Graphene oxide as an optical biosensing platform: progress report. Adv. Mater., 31(6): 1805043. https://doi.org/10.1002/adma.201805043.

Najeeb, M. A., Ahmad, Z., Shakoor, R. A., Mohamed, A. M. A., Kahraman, R. (2017). Talanta, 168: 52-61. https://doi.org/10.1016/j.talanta.2017.03.022.

Nugent, R. P., Krohn, M. A., and Hillier, S. L. (1991). Reliability of diagnosing bacterial vaginosis is improved by a standardized method of Gram Stain interpretation. J. Clin. Microbiol., 29 (2): 297-301.

Ortiz-Riaño, E. J., Avila-Huerta, M. D., Mancera-Zapata, D. L., Morales-Narváez, E. (2020). Microwell plates coated with graphene oxide enable advantageous real-time immunosensing platform. Biosens. Bioelectron., 165: 112319. https://doi.org/10.1016/j.bios.2020.112319.

Ortiz-Riaño, Edwin J., Diana L. Mancera-Zapata, Martha Ulloa-Ramírez, Fernando Arce-Vega, and Eden Morales-Narváez. (2022). Measurement of protein kinetics using a liquid phase-based biosensing platform. Analytical Chemistry, Article ASAP. https://doi.org/10.1021/acs.analchem.2c03305.

Patel, K., Halevi, S., Melman, P., Schwartz, J., Cai, S., Singh, B. R. (2017). Biosensors, 7(3): 32. https://doi.org/10.3390/bios7030032.

Rodríguez-Nava, C., Cortés-Sarabia, K., Avila-Huerta, M. D., Ortiz-Riaño, E. J., Estrada-Moreno, A. K., Alarcón-Romero, L. C., Mata-Ruiz, O., Medina-Flores, Y., Vences-Velazquez, A., Morales-Narváez. (2021). Nanophotonic sialidase immunoassay for bacterial vaginosis diagnosis. ACS Pharmacol. Transl. Sci. https://doi.org/10.1021/acsptsci.0c00211.

Sinclair, Robert C., and Peter V. Coveney. (2019). Modeling nanostructure in graphene oxide: inhomogeneity and the percolation threshold. J. Chem. Inf. Model, 59, 6, 2741–2745. https://doi.org/10.1021/acs.jcim.9b00114.

Srivastava, S., Senguttuvan, T. D., Gupta, B. K. (2018). Highly efficient fluorescence quenching with chemically exfoliated reduced graphene oxide. Journal of Vacuum Science & Technology B., 36(4): 04G104. https://doi.org/10.1116/1.5026170.

Steiner, D. J., Cognetti, J. S., Luta, E. P., Klose, A. M., Bucukovski, J., Bryan, M. R., Schmuke, J. J., Nguyen-Contant, P., Sangster, M. Y., Topham, D. J., Miller, B. L. (2020). Array-based analysis of SARS-CoV-2, other coronaviruses, and influenza antibodies in convalescent COVID-19 patients. Biosens. Bioelectron, 169: 112643. https://doi.org/10.1016/j.bios.2020.112643.

Van den Munckhof, E. H. A., van Sitter, R. L., Boers, K. E., Lamont, R. F., Te Witt, R., le Cessie, S., Knetsch, C. W., van Doorn, L.-J., Quint, W. G. V., Molijn, A., and Leverstein-Van Hall, M. A. (2019). Comparison of amsel criteria, nugent score, culture and two CE-IVD marked quantitative real-time PCRs with microbiota analysis for the diagnosis of bacterial vaginosis. Eur. J. Clin. Microbiol. Infect. Dis., 38(5): 959-966.

Vasilios Georgakilas, Jason A., Perman, Jiri Tucek, and Radek Zboril, (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 115(11): 4744-4822. https://doi.org/10.1021/cr500304f.

Velasco-Soto, M. A., Pérez-García, S. A., Alvarez-Quintana, J., Cao, Y., Nyborg, L., Licea-Jiménez, L. (2015). Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon, 93: 967-973. https://doi.org/10.1016/j.carbon.2015.06.013.

Vessman, J., Stefan, R. I., Staden, J. F. V., Danzer, K., Lindner, W., Burns, D. T., Fajgelj, A., Müller, H. (2001). Selectivity in analytical chemistry: (IUPAC Recommendations 2001). https://doi.org/10.1515/iupac.73.0808.

Wu, S., Lin, X., Hui, K. M., Yang, S., Wu, X., Tan, Y., Li, M., Qin, A.-Q., Wang, Q., Zhao, Q., Ding, P., Shi, K., and Li, X. J. (2019). A biochemiluminescent sialidase assay for diagnosis of bacterial vaginosis. Sci. Rep., 9, 20024.

Publicado
2023-06-01
Cómo citar
Mancera Zapata, D., & Morales Narváez, E. (2023). A biosensing platform based on graphene oxide and photoluminescent probes: advantages and perspectives. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(31), 1e-12e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69798