Nanodispersion of TiO2 in hypochlorous acid and its antimicrobial effect against oral pathogens

  • Juan Rafael Morales-Noriega Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores Unidad León, León, Guanajuato, México. https://orcid.org/0009-0007-1707-2851
  • Christian Andrea López-Ayuso Universidad Nacional Autónoma de México, Programa de Doctorado en Ciencias Odontológicas, Escuela Nacional de Estudios Superiores Unidad León, Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area. https://orcid.org/0000-0003-0534-7823
  • Laura Susana Acosta-Torres Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores Unidad León, Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area. https://orcid.org/0000-0002-5959-9113
  • Ravichandran Manisekaran Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores Unidad León. https://orcid.org/0000-0002-2934-0717
Palabras clave: TiO2 nanoparticles, HOCl, antimicrobial effect, cytotoxic effect, SCAPs

Resumen

El uso continuo e inadecuado de los agentes antimicrobianos tradicionalmente utilizados ha provocado el surgimiento de cepas bacterianas multirresistentes (MDR) y la mutación de microorganismos en el campo de la odontología. Por lo tanto, se han desarrollado varias nanopartículas para combatir patógenos resistentes. Las nanopartículas de dióxido de titanio (TiO2) han sido agentes antimicrobianos atractivos debido a su estabilidad química, no toxicidad y precursores económicos. Por lo tanto, las nanodispersiones basadas en TiO2 se exploraron preparándolas con agentes antimicrobianos bien conocidos, como el ácido hipocloroso (HOCl), para mejorar el efecto antimicrobiano. En este estudio, se sintetizaron y caracterizaron nanodispersiones de TiO2 NPs-HOCl basadas en sol-gel. El efecto antimicrobiano se evaluó mediante un ensayo de microdilución utilizando cepas de S. mutans, S. aureus, E. faecalis y C. albicans mediante la incubación de diferentes concentraciones de las nanodispersiones. Para evaluar los efectos citotóxicos, se inocularon células madre de la papila apical (SCAP) y se evaluaron mediante el ensayo MTT. La nanodispersión exhibió un efecto antimicrobiano mejorado, casi sin citotoxicidad. La nanodispersión basada en HOCl exhibió un mayor efecto antimicrobiano y alta estabilidad. Por lo tanto, se puede utilizar como un agente antimicrobiano prometedor para el tratamiento de diversos patógenos dentales.

Citas

Alvarracin-Baculima, M., Cuenca-León, K., & Pacheco-Quito, E. M. (2021). Nanopartículas antimicrobianas en odontología: estado del arte. Archivos Venezolanos de Farmacología y Terapéutica, 40(8): 839-847. https://doi.org/10.5281/ZENODO.5791388.

Argueta-Figueroa, L., Torres-Gómez, N., Scougall-Vilchis, R. J., & García-Contreras, R. (2018). Biocompatibility and nanotoxicology of titanium dioxide in the oral cavity: systematic review. Investigación Clínica (Venezuela), 59(4): 352-368. https://doi.org/10.22209/IC.v59n4a06.

Besinis, A., De Peralta, T., & Handy, R. D. (2014). The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 8(1): 1-16. https://doi.org/10.3109/17435390.2012.742935.

Bianchi, S., Fantozzi, G., Bernardi, S., Antonouli, S., Adelaide Continenza, M., & Macchiarelli, G. (2020). Commercial oral hygiene products and implant collar surfaces: scanning electron microscopy observations. Canadian Journal of Dental Hygiene, 54(1), 26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533810/.

Block, M. S., & Rowan, B. G. (2020). Hypochlorous acid: a review. Journal of Oral and Maxillofacial Surgery, 78(9): 1461-1466. https://doi.org/10.1016/j.joms.2020. 06.029.

Brandão, F., Fernández-Bertólez, N., Rosário, F., Bessa, M. J., Fraga, S., Pásaro, E., Teixeira, J. P., Laffon, B., Valdiglesias, V., & Costa, C. (2020). Genotoxicity of TiO2 nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH-SY5Y). Nanomaterials, 10(3). https://doi.org/10.3390/nano10030412.

Büyükünal, S. K., Muratoğlu, K., & Koluman, A. (2022). The in vitro effect of hypochlorous acid-metal nanoparticles combination on Salmonella under different temperature conditions. Turkish Journal of Veterinary & Animal Sciences, 46(3): 439-444. https://doi.org/10.55730/1300-0128.4214.

Castillo, D. M., Castillo, Y., Delgadillo, N. A., Neuta, Y., Jola, J., Calderón, J. L., & Lafaurie, G. I. (2015). Viability and effects on bacterial proteins by oral rinses with hypochlorous acid as active ingredient. Brazilian Dental Journal, 26(5): 519-524. https://doi.org/10.1590/0103-6440201300388.

Choi, J. Y., Chung, C. J., Oh, K. T., Choi, Y. J., & Kim, K. H. K. (2009). Photocatalytic antibacterial effect of TiO2 film of TiAg on Streptococcus mutans. Angle Orthodontist, 79(3): 528-532. https://doi.org/10.2319/012108-169.1.

Ch-Th, T., Manisekaran, R., Santoyo-Salazar, J., Schoefs, B., Velumani, S., Castaneda, H., & Jantrania, A. (2021). Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 418: 113374. https://doi.org/10.1016/j.jphotochem.2021.113374.

Dicastillo, C. L. de, Correa, M. G., Martínez, F. B., Streitt, C., & Galotto, M. J. (2020). Antimicrobial effect of titanium dioxide nanoparticles. Antimicrobial Resistance – A One Health Perspective. https://doi.org/10.5772/INTECHOPEN.90891.

Eslami, N., Fasihi, F., Jamalinasab, A., & Ahrari, F. (2021). Biocompatibility of several colloidal solutions containing nanoparticles on human gingival fibroblasts. Dental Research Journal, 18(1). https://doi.org/10.4103/1735-3327.310037.

Foong, L. K., Foroughi, M. M., Mirhosseini, A. F., Safaei, M., Jahani, S., Mostafavi, M., Ebrahimpoor, N., Sharifi, M., Varma, R. S., & Khatami, M. (2020). Applications of nano-materials in diverse dentistry regimes. RSC Advances, 10(26): 15430-15460). Royal Society of Chemistry. https://doi.org/10.1039/d0ra00762e.

Giti, R., Firouzmandi, M., Zare Khafri, N., & Ansarifard, E. (2022). Influence of different concentrations of titanium dioxide and copper oxide nanoparticles on water sorption and solubility of heat-cured PMMA denture base resin. Clinical and Experimental Dental Research, 8(1), 287-293. https://doi.org/10.1002/cre2.527.

Huang, Y. Y., Choi, H., Kushida, Y., Bhayana, B., Wang, Y., & Hamblin, M. R. (2016). Broad-spectrum antimicrobial effects of photocatalysis using titanium dioxide nanoparticles are strongly potentiated by addition of potassium iodide. Antimicrobial Agents and Chemotherapy, 60(9): 5445-5453. https://doi.org/10.1128/AAC.00980-16.

Jana, N. R. (2019). Colloidal nanoparticles: functionalization for biomedical applications. Colloidal Nanoparticles. https://doi.org/10.1201/9780429165603.

Kaladhar Reddy, Kambalyal, P. B., Shanmugasundaram, K., Rajesh, V., Donthula, S., & Patil, S. R. (2018). Comparative evaluation of antimicrobial efficacy of silver, titanium dioxide and zinc oxide nanoparticles against streptococcus mutans. 18(1). https://doi.org/10.4034/PBOCI.2018.181.88.

Khan, S. U. M., Al-Shahry, M., & Ingler, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 297(5590): 2243-.2245. https://doi.org/10.1126/science.1075035.

Kishimoto, N. (2019). State of the art of UV/chlorine advanced oxidation processes: theirmechanism, by products formation, process variation, and applications. Journal of Water and Environment Technology, 17(5):302-335. Japan Society on Water Environment. https://doi.org/10.2965/jwet.19-021.

Kochan, O., Boitsaniuk, S., Levkiv, M., Przystupa, K., Manashchuk, N., Pohoretska, K., Chornij, N., Tsvyntarna, I., & Patskan, L. (2022). Emergence of nano-dentistry as a reality of contemporary dentistry. Applied Sciences (Switzerland), 12(4). MDPI. https://doi.org/10.3390/app12042008.

Kuwabara, M., Sato, Y., Ishihara, M., Takayama, T., Nakamura, S., Fukuda, K., Murakami, K., Yokoe, H., & Kiyosawa, T. (2020). Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering. Wound Medicine, 28. https://doi.org/10.1016/j.wndm.2020.100183.

Lafaurie, G. I., Zaror, C., Díaz-Báez, D., Castillo, D. M., De Ávila, J., Trujillo, T. G., & Calderón-Mendoza, J. (2018). Evaluation of substantivity of hypochlorous acid as an antiplaque agent: a randomized controlled trial. International Journal of Dental Hygiene, 16(4): 527-534. https://doi.org/10.1111/idh.12342.

Leung, Y. H., Xu, X., Ma, A. P. Y., Liu, F., Ng, A. M. C., Shen, Z., Gethings, L. A., Guo, M. Y., Djurišic, A. B., Lee, P. K. H., Lee, H. K., Chan, W. K., & Leung, F. C. C. (2016). Toxicity of ZnO and TiO2 to Escherichia coli cells. Scientific Reports, 6. https://doi.org/10.1038/srep35243.

Madhubala, V., Pugazhendhi, A., & Thirunavukarasu, K. (2019). Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines – An in vitro study. Process Biochemistry, 86: 186-195. https://doi.org/10.1016/j.procbio.2019.08.004.

Maher, M. A. (2023). Hypochlorous acid has emerged as a potential alternative to conventional antibiotics due to its broad-spectrum antimicrobial activity. International Journal of Clinical Microbiology and Biochemical Technology, 6(1): 001–004. https://doi.org/10.29328/journal.ijcmbt.1001026.

Moaddabi, A., Soltani, P., Rengo, C., Molaei, S., Mousavi, S. J., Mehdizadeh, M., & Spagnuolo, G. (2022). Comparison of antimicrobial and wound-healing effects of silver nanoparticle and chlorhexidine mouthwashes: an in vivo study in rabbits. Odontology, 110(3): 577-583. https://doi.org/10.1007/S10266-022-00690-Z.

Nizami, M. Z. I., Xu, V. W., Yin, I. X., Yu, O. Y., & Chu, C. H. (2021). Metal and metal oxide nanoparticles in caries prevention: a review. Nanomaterials, 11(12). MDPI. https://doi.org/10.3390/nano11123446.

Panpaliya, N. P., Dahake, P. T., Kale, Y. J., Dadpe, M. V., Kendre, S. B., Siddiqi, A. G., & Maggavi, U. R. (2019). In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. The Saudi Dental Journal, 31(1): 7683. https://doi.org/10.1016/J.SDENTJ.2018.10.004.

Priyanka, K. P., Sukirtha, T. H., Balakrishna, K. M., & Varghese, T. (2016). Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method. IET Nanobiotechnology, 10(2): 81-86. https://doi.org/10.1049/iet-nbt.2015.0038.

Prokopiuk, V., Yefimova, S., Onishchenko, A., Kapustnik, V., Myasoedov, V., Maksimchuk, P., Butov, D., Bespalova, I., & Tkachenko, A. (2023). Assessing the cytotoxicity of TiO2−x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio. Biological Trace Element Research, 201(6): 3117-3130. https://doi.org/10.1007/s12011-022-03403-3.

Shirkavad, S., & Moslehifard, E. (2014). Effect of TiO2 nanoparticles on tensile strength of dental acrylic resins. Journal of Dental Research, Dental Clinics, Dental Prospects, 8(4): 197-203. https://doi.org/10.5681/joddd.2014.036.

Sismanoglu, S., & Ercal, P. (2022). The cytotoxic effects of various endodontic irrigants on the viability of dental mesenchymal stem cells. Australian Endodontic Journal: The Journal of the Australian Society of Endodontology Inc, 48(2): 305-312. https://doi.org/10.1111/AEJ.12570.

Tazawa, K., Jadhav, R., Azuma, M. M., Fenno, J. C., McDonald, N. J., & Sasaki, H. (2023). Hypochlorous acid inactivates oral pathogens and a SARS-CoV-2-surrogate. BMC Oral Health, 23(1): 111. https://doi.org/10.1186/s12903-023-02820-7.

Vatansever, F., de Melo, W. C. M. A., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N. A., Yin, R., Tegos, G. P., & Hamblin, M. R. (2013). Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiology Reviews, 37(6): 955-989. Blackwell Publishing Ltd. https://doi.org/10.1111/1574-6976.12026.

Wang, M., Li, J., Zhang, S., You, Y., Zhu, X., Xiang, H., Yan, L., Zhao, F., & Li, Y. (2022). Effects of titanium dioxide nanoparticles on cell growth and migration of A549 cells under simulated microgravity. Nanomaterials, 12(11). https://doi.org/10.3390/nano12111879.

Wang, W., Gu, J., Peng, G., Li, J., Meichen, W., Kai, J., & Niu, L. (2020). Progress in the application of metal and metal oxide nanoparticles in the antibacterial modification of dental materials, 28(8). https://doi.org/10.12016/j.issn.2096•1456.2020.08.012.

Yang, J., Liu, J., Wang, P., Sun, J., Lv, X., & Diao, Y. (2021). Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging, 13(4): 5020-5033. https://doi.org/10.18632/aging.202412.

Zhu, Y., Zhang, L., Gao, C. et al. (2000). The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. Journal of Materials Science, 35: 4049-4054. https://doi.org/10.1023/A:1004882120249.

Publicado
2023-12-14
Cómo citar
Morales-Noriega, J., López-Ayuso, C., Acosta-Torres, L. S., & Manisekaran, R. (2023). Nanodispersion of TiO2 in hypochlorous acid and its antimicrobial effect against oral pathogens. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(33), 1e-17e. https://doi.org/10.22201/ceiich.24485691e.2024.33.69813
Sección
Artículos de investigación