Nano recubrimiento de óxido de grafeno sobre aditamentos protésicos de titanio Graphene oxide nano coating on titanium prosthetic abutmente
Contenido principal del artículo
Resumen
Para lograr una mayor supervivencia de los implantes dentales, es importante una sólida integración de los tejidos blandos en la región transmucosa con los pilares protésicos. El objetivo de este estudio fue evaluar si las superficies del pilar de titanio recubiertas con óxido de grafeno mejoraban la adhesión celular. Se ha demostrado que el óxido de grafeno favorece la integración y estabilidad de las células que componen los tejidos blandos periimplantarios, aumentando la biocompatibilidad, adhesión celular y propiedades antibacterianas del titanio. En este estudio se recubrieron las superficies de pilares de titanio anodizados de la empresa Nobel Biocare, mediante inmersión en una suspensión de óxido de grafeno con agua; posteriormente, se colocaron en una mufla a 180 °C durante 2 horas para fijar y secar el recubrimiento. Se caracterizó la película de óxido de grafeno mediante microscopía electrónica de barrido, espectroscopía por dispersión de rayos X (EDS) y mapeo elemental. Finalmente, se evaluaron los pilares protésicos de titanio anodizado con o sin recubrimiento de óxido de grafeno mediante ensayos de adhesión. La microscopía electrónica de barrido permitió observar las capas de óxido de grafeno depositadas sobre la superficie del pilar, el mapeo comprobó la presencia del carbono en toda la superficie y el EDS la presencia de carbono y titanio. Los ensayos biológicos demostraron un incremento significativo en la adhesión celular en los pilares de titanio recubierto con óxido de grafeno en comparación con sus contrapartes sin recubrir. Estos resultados permiten concluir que se lograron recubrir con éxito las superficies de los pilares de titanio anodizado con óxido de grafeno y que este recubrimiento tuvo una influencia favorable en la adhesión celular.
Detalles del artículo
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, editada por la Universidad Nacional Autónoma de México, se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
Citas
Akshaya, S., Praveen Kumar Rowlo, Amey Dukle y A. Joseph Nathanael. (2022). Antibacterial coatings for titanium implants: recent trends and future perspectives. Antibiotics, 11(12): 1719. https://doi.org/10.3390/antibiotics11121719.
Andrukhov, Oleh, Christian Behm, Alice Blufstein, Christian Wehner, Johannes Gahn, Benjamin Pippenger, Raphael Wagner y Xiaohui Rausch-Fan. (2020). Effect of implant surface material and roughness to the susceptibility of primary gingival fibroblasts to inflammatory stimuli. Dental Materials, 36(6): e194-205. https://doi.org/10.1016/j.dental.2020.04.003.
Bonilla-Represa, Victoria, Camilo Abalos-Labruzzi, Manuela Herrera-Martínez y M. Olga Guerrero-Pérez. (2020). Nanomaterials in dentistry: state of the art and future challenges. Nanomaterials, 10(9): 1770. https://doi.org/10.3390/nano10091770.
Carlo, Roberta Di, Antonello Di Crescenzo, Serena Pilato, Alessia Ventrella, Adriano Piattelli, Lucia Recinella, Annalisa Chiavaroli et al. (2020). Osteoblastic differentiation on graphene oxide-functionalized titanium surfaces: an in vitro study. Nanomaterials, 10(4): 654. https://doi.org/10.3390/nano10040654.
Ceratti, Davide. R., Benjamin Louis, Xavier Paquez, Marco Faustini y David Grosso. (2015). A new dip coating method to obtain large‐surface coatings with a minimum of solution. Advanced Materials, 27(34): 4958-62. https://doi.org/10.1002/adma.201502518.
Deng, Zhaoming, Jun Liang, Na Fang y Xiangwei Li. (2022). Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. International Journal of Biological Macromolecules, 208(mayo): 833-43. https://doi.org/10.1016/j.ijbiomac.2022.03.195.
Derks, Jan y Cristiano Tomasi. (2015). Peri‐implant health and disease. A systematic review of current epidemiology. Journal of Clinical Periodontology, 42(S16). https://doi.org/10.1111/jcpe.12334.
Guo, Tianqi, Karan Gulati, Himanshu Arora, Pingping Han, Benjamin Fournier y Sašo Ivanovski. (2021). Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomaterialia, 124(abril): 33-49. https://doi.org/10.1016/j.actbio.2021.01.001.
Hall, Jan, Jessica Neilands, Julia R. Davies, Annika Ekestubbe y Bertil Friberg. (2019). A randomized, controlled, clinical study on a new titanium oxide abutment surface for improved healing and soft tissue health. Clinical Implant Dentistry and Related Research, 21(S1): 55-68. https://doi.org/10.1111/cid.12749.
Huang, Minjie, Minhui Xiao, Jie Dong, Yee Huang, Haiyan Sun y Deqian Wang. (2022). Synergistic anti-inflammatory effects of graphene oxide quantum dots and trans-10-hydroxy-2-decenoic acid on LPS-stimulated RAW 264.7 macrophage cells. Biomaterials Advances, 136(mayo): 212774. https://doi.org/10.1016/j.bioadv.2022.212774.
Inchingolo, Angelo Michele, Giuseppina Malcangi, Alessio Danilo Inchingolo, Antonio Mancini, Giulia Palmieri, Chiara Di Pede, Fabio Piras, Francesco Inchingolo, Gianna Dipalma y Assunta Patano. (2023). Potential of graphene-functionalized titanium surfaces for dental implantology: systematic review. Coatings, 13(4): 725. https://doi.org/10.3390/coatings13040725.
Ivanovski, Saso y Ryan Lee. (2018). Comparison of peri‐implant and periodontal marginal soft tissues in health and disease. Periodontology 2000, 76(1): 116-30. https://doi.org/10.1111/prd.12150.
Jeon, Hong Goo, Yoon Ho Huh, Soo Hong Yun, Ki Woong Kim, Sun Sook Lee, Jongsun Lim, Ki-Seok An y Byoungchoo Park. (2014). Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices. Journal of Materials Chemistry C, 2(14): 2622. https://doi.org/10.1039/c3tc31933d.
Kawamoto, Kohei, Hirofumi Miyaji, Erika Nishida, Saori Miyata, Akihito Kato, Akito Tateyama, Tomokazu Furihata, Kanako Shitomi, Toshihiko Iwanaga y Tsutomu Sugaya. (2018). Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog. International Journal of Nanomedicine, 13(abril): 2365-76. https://doi.org/10.2147/IJN.S163206.
Kwak, Jeong Min, Jungho Kim, Chung‐Sung Lee, Il‐Soo Park, Min Lee, Dal‐Hee Min y In‐Sung Luke Yeo. (2022). Graphene oxide as a biocompatible and osteoinductive agent to promote implant osseointegration in a rabbit tibia model. Advanced Materials Interfaces, 9(28). https://doi.org/10.1002/admi.202201116.
Lee, Wong Cheng, Candy Haley Y. X. Lim, Hui Shi, Lena A. L. Tang, Yu Wang, Chwee Teck Lim y Kian Ping Loh. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 5(9): 7334-41. https://doi.org/10.1021/nn202190c.
Li, Xiaojing, Xin Liang, Yanhui Wang, Dashan Wang, Minhua Teng, Hao Xu, Baodong Zhao y Lei Han. (2022). Graphene-based nanomaterials for dental applications: principles, current advances and future outlook. Frontiers in Bioengineering and Biotechnology, 10(marzo). https://doi.org/10.3389/fbioe.2022.804201.
Liu, Jingqi, Ning Hu, Xuyang Liu, Yaolu Liu, Xuewei Lv, Liangxiao Wei y Shoutao Zheng. (2019). Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering. Nanoscale Research Letters, 14(1): 114. https://doi.org/10.1186/s11671-019-2951-9.
Liu, Yunsong, Tong Chen, Feng Du, Ming Gu, Ping Zhang, Xiao Zhang, Jianzhang Liu, Longwei Lv, Chunyang Xiong y Yongsheng Zhou. (2016). Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem cells in vitro and in vivo. Journal of Biomedical Nanotechnology, 12(6): 1270-84. https://doi.org/10.1166/jbn.2016.2254.
Murugesan, N., S. Suresh, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, V. Prasanna Venkatesh, B. K. Balachandar, S. Karthick Kumar y M. N. M. Ansari. (2023). Facile dip-coating assisted preparation of reduced graphene oxide-copper oxide nanocomposite thin films on aluminum substrate for solar selective absorber. Physica B: Condensed Matter, 669(noviembre): 415288. https://doi.org/10.1016/j.physb.2023.415288.
Mussano, Federico, Tullio Genova, Marco Laurenti, Elisa Zicola, Luca Munaron, Paola Rivolo, Pietro Mandracci y Stefano Carossa. (2018). Early response of fibroblasts and epithelial cells to pink-shaded anodized dental implant abutments: an in vitro study. The International Journal of Oral & Maxillofacial Implants, 33(3): 571-79. https://doi.org/10.11607/jomi.6479.
Park, Jae-bum, Dan-bi Park, Ji-hoon Lee, Su-jeong Yang, Ji-eun Lee, Jin-Kyung Park, Jeung-Soo Huh y Jeong-Ok Lim. (2022). Application of graphene oxide as a biomaterial for the development of large-area cell culture vessels. Applied Sciences, 12(22): 11599. https://doi.org/10.3390/app122211599.
Song, Fei, Fuyou Ke, Huiying Zhang y Huaping Wang. (2019). Preparation of graphene-coated conductive fibers by layer-by-layer assembly of negative and positive charged graphene oxide. Materials Today: Proceedings, 16: 1542-47. https://doi.org/10.1016/j.matpr.2019.05.338.
Srimaneepong, Viritpon, Hans Erling Skallevold, Zohaib Khurshid, Muhammad Sohail Zafar, Dinesh Rokaya y Janak Sapkota. (2022). Graphene for antimicrobial and coating application. International Journal of Molecular Sciences, 23(1): 499. https://doi.org/10.3390/ijms23010499.
Tang, Xiaoning y Xiong Yan. (2017). Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology, 81(2): 378-404. https://doi.org/10.1007/s10971-016-4197-7.
Teng, F., H. Chen, Y. Xu, Y. Liu y G. Ou. (2018). Polydopamine deposition with anodic oxidation for better connective tissue attachment to transmucosal implants. Journal of Periodontal Research, 53(2): 222-31. https://doi.org/10.1111/jre.12509.
Wan, Zhaomei, Jiuxiao Li, Dongye Yang y Shuluo Hou. (2022). Microstructural and mechanical properties characterization of graphene oxide-reinforced ti-matrix composites. Coatings, 12(2): 120. https://doi.org/10.3390/coatings12020120.
Wang, Xing, Weilong Diwu, Jianbin Guo, Ming Yan, Wenrui Ma, Min Yang, Long Bi y Yisheng Han. (2023). Enhancement of antibacterial properties and biocompatibility of Ti6Al4V by graphene oxide/strontium nanocomposite electrodepositing. Biochemical and Biophysical Research Communications, 665(julio): 35-44. https://doi.org/10.1016/j.bbrc.2023.05.002.
Williams, A. G., E. Moore, A. Thomas y J. A. Johnson. (2023). Graphene-based materials in dental applications: antibacterial, biocompatible y bone regenerative properties. International Journal of Biomaterials, 2023(febrero): 1-18. Alexander Seifalian (ed.). https://doi.org/10.1155/2023/8803283.
Zheng, Zheng, Xiaogang Ao, Peng Xie, Fan Jiang y Wenchuan Chen. (2021). The biological width around implant. Journal of Prosthodontic Research, 65(1): 11-18. https://doi.org/10.2186/jpr.JPOR_2019_356.