Implicaciones de los nanomateriales utilizados en la agricultura: una revisión de literatura de los beneficios y riesgos para la sustentabilidad

  • Hermes Pérez Hernández Universidad Autónoma Agraria Antonio Narro, Departamento de Botánica, Investigación posdoctoral. Saltillo, Coahuila, México. http://orcid.org/0000-0002-5883-066X
  • Fernando López-Valdez Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Laboratorio de Biotecnología Agrícola y Agronanobiotecnología. Tepetitla de Lardizábal, Tlaxcala, México. http://orcid.org/0000-0003-2347-2054
  • Antonio Juárez-Maldonado Universidad Autónoma Agraria Antonio Narro, Departamento de Botánica, Investigación posdoctoral. Saltillo, Coahuila, México. https://orcid.org/0000-0003-3061-2297
  • Alonso Méndez-López Universidad Autónoma Agraria Antonio Narro, Departamento de Botánica, Investigación posdoctoral. Saltillo, Coahuila, México. https://orcid.org/0000-0002-4356-0409
  • Cesar Roberto Sarabia-Castillo Cinvestav-Saltillo, Programa de Sustentabilidad de los Recursos Naturales y Energía. Coahuila de Zaragoza, México. https://orcid.org/0000-0002-9387-4000
  • Selvia García-Mayagoitia Cinvestav-Saltillo, Programa de Sustentabilidad de los Recursos Naturales y Energía. Coahuila de Zaragoza, México. https://orcid.org/0000-0003-1066-4452
  • Andrés Patricio Torres-Gómez Cinvestav-Saltillo, Programa de Sustentabilidad de los Recursos Naturales y Energía. Coahuila de Zaragoza, México. http://orcid.org/0000-0002-3121-527X
  • Jessica Denisse Valle-García Cinvestav-Zacatenco, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad. Ciudad de México, México. https://orcid.org/0000-0001-9363-1327
  • Andrea Yakelín Pérez-Moreno Cinvestav-Saltillo, Programa de Sustentabilidad de los Recursos Naturales y Energía. Coahuila de Zaragoza, México. https://orcid.org/0000-0002-4584-8748
Palabras clave: nanotecnología, nanopartículas, agronanotecnología, nanopesticidas, nanosensores

Resumen

Las propiedades mecánicas, químicas, térmicas, ópticas, eléctricas y biológicas de los nanomateriales y nanopartículas hacen posible su aplicación en áreas de la industria: medicina, cosmética, automotriz, higiene personal, electrónica, agrícola y ambiental, entre otras. Para el sector agrícola, desde hace más de dos décadas, la nanotecnología ha sido considerada como una tecnología de avanzada, las investigaciones sobre estos materiales han mostrado el potencial de materiales nanométricos como bioestimulantes del crecimiento, de las características morfológicas y bioquímicas de las plantas. Además, se pueden desarrollar nano productos para el control de plagas, enfermedades, arvenses, entre otros, con la acción combinada de los nanomateriales y los metabolitos de las plantas dando beneficios a favor de la agricultura. Con la información recopilada, se ha demostrado que se continúan investigando los efectos controversiales de la nanotecnología aplicada a la agricultura, pero, sin duda, en los próximos años, con la aparición de nuevos instrumentos, nuevas metodologías y el trabajo multidisciplinario, las futuras investigaciones mostrarán evidencia en la cadena trófica y posiblemente los efectos palpables en el cuerpo humano.

Citas

Abbas, Q., Yousaf, B., Ullah, H., Ali, M. U., Ok, Y. S., Rinklebe, J. (2020). Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Critical Reviews in Environmental Science and Technology, 50(23): 2523-2581. https://doi.org/10.1080/10643389.2019.1705721.

Abdel-Rahman, F. A., Monir, G. A., Hassan, M. S., Ahmed, Y., Refaat, M. H., Ismail, I. A., El-Garhy, H. A. (2021). Exogenously applied chitosan and chitosan nanoparticles improved apple fruit resistance to blue mold, upregulated defense-related genes expression, and maintained fruit quality. Horticulturae, 7(8): 224. https://doi.org/10.3390/horticulturae7080224.

Abdulsada, Z., Kibbee, R., Schwertfeger, D., Princz, J., DeRosa, M., Örmeci, B. (2021). Fate and removal of silver nanoparticles during sludge conditioning and their impact on soil health after simulated land application. Water Research, 206: 117757. https://doi.org/10.1016/j.watres.2021.117757.

Acharya, A., Pal, P. K. (2020). Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact, 19: 100232. https://doi.org/10.1016/j.impact.2020.100232.

Adrees, M., Khan, Z. S., Ali, S., Hafeez, M., Khalid, S., Ur Rehman, M. Z., Hussain, K., Chatha, S. A. S., Rizwan, M. (2020). Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanoparticles. Chemosphere, 238: 124681. https://doi.org/10.1016/j.chemosphere.2019.124681.

Agayeva, N. J., Rzayev, F. H., Gasimov, E. K., Mamedov, C. A., Ahmadov, I. S., Sadigova, N. A., Khusro, A., Al-Dhabi, N. A., Arasu, M. V. (2020). Exposure of rainbow trout (Oncorhynchus mykiss) to magnetite (Fe3O4) nanoparticles in simplified food chain: Study on ultrastructural characterization. Saudi Journal of Biological Sciences, 27(12): 3258-3266. https://doi.org/10.1016/j.sjbs.2020.09.032.

Ahmed, B., Ameen, F., Rizvi, A., Ali, K., Sonbol, H., Zaidi, A., Khan, M. S., Musarrat, J. (2020). Destruction of cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS omega, 5(14): 7861-7876. https://doi.org/10.1021/acsomega.9b04084.

Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M., Saiful Islam, A. B. M., Ong, H. C. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204: 111967. https://doi.org/10.1016/j.envres.2021.111967.

Alabdallah, Nadiyan M., Hassan S. Alzahrani. (2020). The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi Journal of Biological Sciences, 27: 3132-3137. https://doi.org/10.1016/j.sjbs.2020.08.005.

Ali, S., Mehmood, A., Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/6677616.

Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawani, M., Elhawat, N., Al-Otaibi, A. (2018). Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant physiology and biochemistry, 125:164-171. https://doi.org/10.1016/j.plaphy.2018.02.006.

Alvandi, N., Assariha, S., Esfandiari, N., Jafari, R. (2021). Off–on sensor based on concentration-dependent multicolor fluorescent carbon dots for detecting pesticides. Nano-Structures & Nano-Objects, 26: 100706. https://doi.org/10.1016/j.nanoso.2021.100706.

Amrane, A., Mohan, D., Nguyen, T. A., Assadi, A. A. A., Yasin, G. (eds.). (2020). Nanomaterials for soil remediation. Micro and Nano Technologies Series. Elsevier e-book: Elsevier.

An, J., Hu, P., Li, F., Wu, H., Shen, Y., White, J. C., Tian, X., Li, Z., Giraldo, J. P. (2020). Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 7(8): 2214-2228. https://doi.org/10.1039/D0EN00387E.

Aparna, A., Sreehari, H., Chandran, A., Anjali, K. P., Alex, A. M., Anuvinda, P., Gouthami, G. B., Pillai, N. P., Parvathy, N., Sadanandan, S., Appukuttan, S. (2021). Ligand-protected nanoclusters and their role in agriculture, sensing and allied applications. Talanta, 123134. https://doi.org/10.1016/j.talanta.2021.123134.

Arul, V., Edison, T. N. J. I., Lee, Y. R., Sethuraman, M. G. (2017). Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. Journal of Photochemistry and Photobiology B: Biology, 168: 142-148. https://doi.org/10.1016/j.jphotobiol.2017.02.007.

Asgari, F., Majd, A., Jonoubi, P., Najafi, F. (2018). Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiology and Biochemistry, 127: 152-160. https://doi.org/10.1016/j.plaphy.2018.03.021.

Asghari, F., Jahanshiri, Z., Imani, M., Shams-Ghahfarokhi, M., Razzaghi-Abyaneh, M. (2016). Antifungal nanomaterials: synthesis, properties, and applications. En Nanobiomaterials in antimicrobial therapy. William Andrew Publishing, 343-383.

Ashraf, S. A., Siddiqui, A. J., Abd Elmoneim, O. E., Khan, M. I., Patel, M., Alreshidi, M., Moin, A., Singh, R., Snoussi, M., Adnan, M. (2021). Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment, 144990. https://doi.org/10.1016/j.scitotenv.2021.144990.

Ayala, M. D. C. N. A., Castillo, F. D. H., Alcalá, E. I. L., Pérez, A. S. L., Canché, C. N. A., García, J. R. (2020). Efecto biológico de nanopartículas cargadas con ácido indolacético microbiano en parámetros morfométricos de tomate. Revista Mexicana de Ciencias Agrícolas, 11: 507-517. https://doi.org/10.29312/remexca.v11i3.1919.

Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., Han, Y. K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26 (4): 1201-14. https://doi.org/10.1016/j.jfda.2018.06.011.

Baysal Asli, Saygın Hasan. (2018). Effect of zinc oxide nanoparticles on the trace element contents of soils. Chemistry and Ecology, 34: 713-726. https://doi.org/10.1080/02757540.2018.1491556.

Bidi, H., Fallah, H., Niknejad, Y., Tari, D. B. (2021). Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiology and Biochemistry, 163: 348-357. https://doi.org/10.1016/j.plaphy.2021.04.020.

Bolade, O. P., A. B. Williams, N. U. Benson. (2020). Green synthesis of iron-based nanomaterials for environmental remediation: a review. Environ. Nanotechnol. Monit. Manag. 13: 100279: 1-26. https://doi.org/10.1016/j.enmm.2019.100279.

Borišev, M., Borišev, I., Župunski, M., Arsenov, D., Pajević, S., Ćurčić, Ž., Vasin, J., Djordjevic, A. (2016). Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One, 11(11): e0166248. https://doi.org/10.1371/journal.pone.0166248.

Brar, K. K., Magdouli, S., Othmani, A., Ghanei, J., Narisetty, V., Sindhu, R., Binod, P., Pugazhendhi, A., Awasthi, M. K., Pandey, A. (2021). Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environmental Research, 112202. https://doi.org/10.1016/j.envres.2021.112202.

Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and applied pharmacology, 175(3): 191-199. https://doi.org/10.1006/taap.2001.9240.

Callaham, M. A., Stanturf J. A. (2021). Chapter 2 – Soil ecology and restoration science. En Stanturf, John A., Callaham, Mac A. (eds.), Soils and landscape restoration. Academic Press: 39-62. https://doi.org/10.1016/B978-0-12-813193-0.00002-3.

Chariou, P. L., Ortega-Rivera, O. A., Steinmetz, N. F. (2020). Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano, 14(3): 2678-2701. https://doi.org/10.1021/acsnano.0c00173.

Chaudhry, N., Dwivedi, S., Chaudhry, V., Singh, A., Saquib, Q., Azam, A., Musarrat, J. (2018). Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microbial pathogenesis, 123: 196-200. https://doi.org/10.1016/j.micpath.2018.07.013.

Chausali, N., Saxena, J., Prasad, R. (2021). Nanobiochar and biochar based nanocomposites: advances and applications. Journal of Agriculture and Food Research, 5: 100191. https://doi.org/10.1016/j.jafr.2021.100191.

Chen, Hao. (2018). Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability, 30: 123-134. https://doi.org/10.1080/09542299.2018.1520050.

Chen, W. H., J. R, Huang. (2020). Adsorption of organic including pharmaceutical and inorganic contaminants in water toward graphene-based materials. Chap. 3. En Contaminants of emerging concern in water and wastewater. Elsevier Inc., 93-113.

Cota-Sánchez, G., Merlo-Sosa, L., Ávalos-Ramírez, A., Mendoza-González, N. (2015). 2. Assessment approaches, test methods, and monitoring strategies for nanomaterials. En Nanomaterials in the environment. American Society of Civil Engineers (ASCE), 27-56.

Dimkpa, C. O., Singh, U., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., White, J. C. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 688: 926-934. https://doi.org/10.1016/j.scitotenv.2019.06.392.

Do Espirito Santo Pereira, A., Caixeta Oliveira, H., Fernandes Fraceto, L., Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2): 267. https://doi.org/10.3390/nano11020267.

Du, W., Yang, J., Peng, Q., Liang, X., Mao, H. (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere, 227: 109-116.7 https://doi.org/10.1016/j.chemosphere.2019.03.168.

El-Gazzar, N., Ismail, A. M. (2020). The potential use of titanium, silver and selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatalysis and Agricultural Biotechnology, 27: 101708.

El-Saadony, M. T., Saad, A. M., Najjar, A. A., Alzahrani, S. O., Alkhatib, F. M., Shafi, M. E., Selem, E., Desoky, E. M., Fouda, El-Tahan, A. M., S. E. E. Hassan, M. A. (2021). The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 28(8): 4461-4471. https://doi.org/10.1016/j.sjbs.2021.04.043.

Farouk, S., Al-Amri, S. M. (2019). Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) plants. Journal of Soil Science and Plant Nutrition, 19(4): 887-899. https://doi.org/10.1007/s42729-019-00087-y.

Feichtmeier, N. S., Walther, P., Leopold, K. (2015). Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environmental science and pollution research, 22(11): 8549-8558. https://doi.org/10.1007/s11356-014-4015-0.

Fenu, G., Francesca, M. M. (2020). DSS LANDS: a decision support system for agriculture in Sardinia. HighTech and Innovation Journal, 1:129-135. https://doi.org/10.28991/HIJ-2020-01-03-05.

Foladori, G., Bejarano, F., Invernizzi, N. (2013). Nanotecnología: gestión y reglamentación de riesgos para la salud y medio ambiente en América Latina y el Caribe. Trabalho, Educação e Saúde, 11: 145-167, Brasil.

Foladori, G. (2017). Occupational and environmental safety standards in nanotechnology: International Organization for Standardization, Latin America and Beyond. Economic and Labour Relations Review, 28(4): 538-54. https://doi.org/10.1177/1035304617719802.

Gaviria-Arroyave, M. I., Cano, J. B., Peñuela, G. A. (2020). Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: a critical review. Talanta Open, 100006. https://doi.org/10.1016/j.talo.2020.100006.

González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., Valdés-Reyna, J., Juárez-Maldonado, A. (2021a). Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 10(2): 217. https://doi.org/10.3390/plants10020217.

González‐García, Y., González‐Moscoso, M., Hernández‐Hernández, H., Méndez‐López, A., Juárez‐Maldonado, A. (2021b). Induction of stress tolerance in crops by applying nanomaterials. Nanotechnology in plant growth promotion and protection: Recent Advances and Impacts, 129-169. https://doi.org/10.1002/9781119745884.ch8.

Griffiths, B. S., Römbke, J., Schmelz, R. M., Scheffczyk, A., Faber, J. H., Bloem, J., ... y Stone, D. (2016). Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 69: 213-223. https://doi.org/10.1016/j.ecolind.2016.04.023.

Grün, A. L., Scheid, P., Hauröder, B., Emmerling, C., Manz, W. (2017). Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba. Journal of Plant Nutrition and Soil Science, 180 (5): 602-613.https://doi.org/10.1002/jpln.201700277.

Gupta, S. D., Agarwal, A., Pradhan, S. (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and environmental safety, 161, 624-633. https://doi.org/10.1016/j.ecoenv.2018.06.023.

Hayes, K. L., Mui, J., Song, B., Sani, E. S., Eisenman, S. W., Sheffield, J. B., Kim, B. (2020). Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: A comparison study to phytotoxic aluminum ions. Science of The Total Environment, 719: 137393. https://doi.org/10.1016/j.scitotenv.2020.137393.

He, H., Sun, D. W., Wu, Z., Pu, H., Wei, Q. (2021). On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends in Food Science & Technology. 119: 243-256. https://doi.org/10.1016/j.tifs.2021.11.029.

He, X., Deng, H., Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1): 1-21. https://doi.org/10.1016/j.jfda.2018.12.002.

He, Y., Xiao, S., Dong, T., Nie, P. (2019). Gold nanoparticles with different particle sizes for the quantitative determination of chlorpyrifos residues in soil by SERS. International Journal of Molecular Sciences, 20(11): 2817. https://doi.org/10.3390/ijms20112817.

Heikal, Y. M., Abdel-Aziz, H. M. (2021). Toxicology and safety aspects of nanosensor on environment, food, and agriculture. En Nanosensors for Environment, Food and Agriculture, 1: 139-156. Springer.

Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Valdés-Reyna, J., Juárez-Maldonado, A. (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8(10): 355. https://doi.org/10.3390/plants8100355.

Hernández-Tenorio, F., Orozco-Sánchez, F. (2020). Nanoformulaciones de bioinsecticidas botánicos para el control de plagas agrícolas. Revista de la Facultad de Ciencias 9: 72-91. https://doi.org/10.15446/rev.fac.cienc.v9n1.81401.

Hong, C., Ye, S., Dai, C., Wu, C., Chen, L., Huang, Z. (2020). Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Analytical and Bioanalytical Chemistry, 412(29): 8177-8184. https://doi.org/10.1007/s00216-020-02952-7.

Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75: 40-53. https://doi.org/10.1016/j.jes.2018.06.010.

Hui, C., Zhang, Y., Ni, X., Cheng, Q., Zhao, Y., Zhao, Y., Du, L., Jiang, H. (2021). Interactions of iron-based nanoparticles with soil dissolved organic matter: adsorption, aging, and effects on hexavalent chromium removal. Journal of Hazardous Materials, 406: 124650. https://doi.org/10.1016/j.jhazmat.2020.124650.

Husein, D. Z., Hassanien, R., Al-Hakkani, M. F. (2019). Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon, 5(8): e02339. https://doi.org/10.1016/j.heliyon.2019.e02339.

Hussain, A., Ali, S., Rizwan, M., ur Rehman, M. Z., Javed, M. R., Imran, M., Chatha, S. A. S Nazir, R. (2018). Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 242: 1518-1526 https://doi.org/10.1016/j.envpol.2018.08.036.

Hussain, B., Lin, Q., Hamid, Y., Sanaullah, M., Di, L., Khan, M. B., He, Z., Yang, X. (2020). Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Science of the Total Environment, 712: 136497. https://doi.org/10.1016/j.scitotenv.2020.136497.

Hussain, M., Raja, N. I., Iqbal, M., Ejaz, M., Aslam, S. (2019). Green synthesis and evaluation of silver nanoparticles for antimicrobial and biochemical profiling in Kinnow (Citrus reticulata L.) to enhance fruit quality and productivity under biotic stress. IET nanobiotechnology, 13(3): 250-256. https://doi.org/10.1049/iet-nbt.2018.5049.

Ibrahim, E., Fouad, H., Zhang, M., Zhang, Y., Qiu, W., Yan, C., ... y Chen, J. (2019). Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC advances, 9(50): 29293-29299. https://doi.org/10.1039/C9RA04246F.

Illés, E., Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295: 115-123. https://doi.org/10.1016/j.jcis.2005.08.003.

Ioannou, A., Gohari, G., Papaphilippou, P., Panahirad, S., Akbari, A., Dadpour, M. R., ... y Fotopoulos, V. (2020). Advanced nanomaterials in agriculture under a changing climate: the way to the future? Environmental and Experimental Botany, 176: 104048. https://doi.org/10.1016/j.envexpbot.2020.104048.

Jahani, M., Khavari-Nejad, R. A., Mahmoodzadeh, H., Saadatmand, S. (2020). Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3): 1260-1275. https://doi.org/10.15835/nbha48311766.

Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1): 1050-1074. https://doi.org/10.3762/bjnano.9.98.

Jiang, Y., Yu, L., Sun, H., Yin, X., Wang, C., Mathews, S., Wang, N. (2017). Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength. Chemical Speciation & Bioavailability, 29(1): 186-196. https://doi.org/10.1080/09542299.2017.1403293.

Joshi, A., Kaur, S., Dharamvir, K., Nayyar, H., Verma, G. (2018). Multi‐walled carbon nanotubes applied through seed‐priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture, 98(8): 3148-3160. https://doi.org/10.1002/jsfa.8818.

Juárez-Maldonado, A. (2021). Impact of nanomaterials on plants: what other implications do they have? Biocell, 46(3): 651-654. https://doi.org/10.32604/biocell.2022.017350.

Kamran, M., Ali, H., Saeed, M. F., Bakhat, H. F., Hassan, Z., Tahir, M., ... y Shah, G. M. (2020). Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicology and Environmental Safety, 205: 111099. https://doi.org/10.1016/j.ecoenv.2020.111099.

Kaphle, A., Navya, P. N., Umapathi, A., Daima, H. K. (2018). Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental chemistry letters, 16(1): 43-58. https://doi.org/10.1007/s10311-017-0662-y.

Kaphle, A., Navya, P. N., Umapathi, A., Chopra, M., Daima, H. K. (2017). Nanomaterial impact, toxicity and regulation in agriculture, food and environment. En Nanoscience in food and agriculture 5. Springer, Cham., 205-242. https://doi.org/10.1007/978-3-319-58496-6_8.

Kashyap, P. L., Kumar, S., Jasrotia, P., Singh, D. P., Singh, G. P. (2019). Nanosensors for plant disease diagnosis: current understanding and future perspectives. En Pudake, R., Chauhan, N., Kole, C. (eds.), Nanoscience for sustainable agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_9.

Kasote, D. M., Lee, J. H., Jayaprakasha, G. K., Patil, B. S. (2019). Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainable Chemistry & Engineering, 7(5): 5142-5151. PubAg U.S. Department of Agriculture.

Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M. J., Alyemeni, M. N., Brestic, M., Zhang, X., Ali, S., Huang, L. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156: 221-232. https://doi.org/10.1016/j.plaphy.2020.09.018.

Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A., Siddiqui, Z. H. (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 110: 194-209. https://doi.org/10.1016/j.plaphy.2016.05.038.

Kim, S., Kim, J., Lee, I. (2011). Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chemistry and Ecology, 27: 49-55. https://doi.org/10.1080/02757540.2010.529074.

Kőrösi, L., Pertics, B., Schneider, G., Bognár, B., Kovács, J., Meynen, V., Scarpellini, A., Pasquale, L., Prato, M. (2020). Photocatalytic inactivation of plant pathogenic bacteria using TiO2 nanoparticles prepared hydrothermally. Nanomaterials, 10(9): 1730. https://doi.org/10.3390/nano10091730.

Kraas, M., Schlich, K., Knopf, B., Wege, F., Kägi, R., Terytze, K., Hund‐Rinke, K. (2017). Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environmental Toxicology and Chemistry, 36: 3305-3313. https://doi.org/10.1002/etc.3904.

Kumaraswamy, R. V., Kumari, S., Choudhary, R. C., Pal, A., Raliya, R., Biswas, P., Saharan, V. (2018). Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules, 113: 494-506. https://doi.org/10.1016/j.ijbiomac.2018.02.130.

Larsson, S., Jansson, M., Boholm, Å. (2019). Expert stakeholders’ perception of nanotechnology: risk, benefit, knowledge, and regulation. Journal of Nanoparticle Research, 21(3): 1-17. https://doi.org/10.1007/s11051-019-4498-1.

Larue, C., Baratange, C., Vantelon, D., Khodja, H., Surblé S., Elger, A., Carrière M. (2018). Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Science of the Total Environment, 630: 609-617. https://doi.org/10.1016/j.scitotenv.2018.02.264.

Li, B., Chen, Y., Liang, W. Z., Mu, L., Bridges, W. C., Jacobson, A. R., Darnault, C. J. (2017). Influence of cerium oxide nanoparticles on the soil enzyme activities in a soil-grass microcosm system. Geoderma, 299:54-62. https://doi.org/10.1016/j.geoderma.2017.03.027.

Li, Y., Zhu, N., Liang, X., Bai, X., Zheng, L., Zhao, J., Li, Y., Zhang, Z., Gao, Y. (2020). Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg (ii) in soybean (Glycine max). Environmental Science: Nano, 7(6): 1807-1817. https://doi.org/10.1039/D0EN00091D.

Lian, J., Zhao, L., Wu, J., Xiong, H., Bao, Y., Zeb, A., Tang, J., Liu, W. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 239: 124794. https://doi.org/10.1016/j.chemosphere.2019.124794.

Lira-Saldívar, R. H., Méndez Argüello, B., De los Santos Villarreal, G., Vera Reyes, I. (2018). Potencial de la nanotecnología en la agricultura. Acta Universitaria, 28(2): 9-24, México. https://doi.org/10.15174/au.2018.1575.

Lira-Saldívar, R. H., Méndez Argüello, B., De los Santos Villarreal, G., Vera Reyes, I. (2018). Agronanotecnología: una nueva herramienta para la agricultura moderna. Revista de la Facultad de Ciencias Agrarias UNCuyo, 50(2): 395-411.

Lombi, E., Donner, E., Dusinska, M., Wickson, F. (2019). A one health approach to managing the applications and implications of nanotechnologies in agriculture. Nature Nanotechnology, 14(6): 523-31. https://doi.org/10.1038/s41565-019-0460-8.

Lu, Y., Lan, Q., Zhang, C., Liu, B., Wang, X., Xu, X., Liang, X. (2021). Trace-level sensing of phosphate for natural soils by a nano-screen-printed electrode. Environmental Science & Technology, 55(19): 13093-13102. https://doi.org/10.1021/acs.est.1c05363.

Macůrková, A., Maryška L., Jindřichová, B., Drobníková, T., Vrchotová, B., Pospíchalová, R., Záruba, K., Hubáček, T., Siegel, J., Burketová, L., Lovecká, P., Valentová, O. (2021). Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Applied Soil Ecology, 168: 104165. https://doi.org/10.1016/j.apsoil.2021.104165.

Mankad, M., Patil, G., Patel, D., Patel, P., Patel, A. (2020). Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. oryzae. Arabian Journal of Chemistry, 13(1): 2865-2872. https://doi.org/10.1016/j.arabjc.2018.07.016.

Memari-Tabrizi, E. F., Yousefpour-Dokhanieh, A., Babashpour-Asl, M. (2021). Foliar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L.). Plant Physiology and Biochemistry, 165: 71-79. https://doi.org/10.1016/j.plaphy.2021.04.040.

Mishra, M., Dashora, K., Srivastava, A., Fasake, V. D., Nag, R. H. (2019). Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicology and environmental safety, 171: 677-682. https://doi.org/10.1016/j.ecoenv.2018.12.085.

Mitter, N., Hussey, K. (2019). Moving policy and regulation forward for nanotechnology applications in agriculture. Nature nanotechnology, 14(6): 508-510. https://doi.org/10.1038/s41565-019-0464-4.

Mosa, K. A., Ismail, A., Helmy, M. (2017). Plant stress tolerance: an integrated omics approach. Cham, Switzerland: Springer.

Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., ... e Imran, M. (2018). Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials & Biostructures (DJNB): 13(1).

Nandhini, M., Rajini, S. B., Udayashankar, A. C., Niranjana, S. R., Lund, O. S., Shetty, H. S., Prakash, H. S. (2019). Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protection, 121: 103-112. https://doi.org/10.1016/j.cropro.2019.03.015.

Nasrollahzadeh, M., Sajjadi, M., Iravani, S., Varma, R. S. (2021). Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials, 401: 123401. https://doi.org/10.1016/j.jhazmat.2020.123401.

Nazaralian, S., Majd, A., Irian, S., Najafi, F., Ghahremaninejad, F., Landberg, T., Greger, M. (2017). Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiology and Biochemistry, 115: 25-33. https://doi.org/10.1016/j.plaphy.2017.03.009.

Nishu, S. D., Park, S., Ji, Y., Han, I., Key, J., Lee, T. K. (2020). The effect of engineered PLGA nanoparticles on nitrifying bacteria in the soil environment. Journal of Industrial and Engineering Chemistry, 84: 297-304. https://doi.org/10.1016/j.jiec.2020.01.011.

Nithya, K., A. Sathish, P. S. Kumar, T. Ramachandran. (2018). Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J. Ind. Eng. Chem. 59: 230-241. https://www.sciencedirect.com/science/article/pii/S1226086X17305683.

Nomngongo, P. N., Ngila, J. C., Musyoka, S. M., Msagati, T. A., Moodley, B. (2013). A solid phase extraction procedure based on electrospun cellulose-g-oxolane-2, 5-dione nanofibers for trace determination of Cd, Cu, Fe, Pb and Zn in gasoline samples by ICP-OES. Analytical Methods, 5(12): 3000-3008. https://doi.org/10.1039/C3AY26543A.

Nuruzzaman, M. D., Rahman, M. M., Liu, Y., Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of Agricultural and Food Chemistry, 64(7): 1447-1483. https://doi.org/10.1021/acs.jafc.5b05214.

OECD. (2022). Recommendation of the Council on OECD Legal Instruments the Safety Testing and Assessment of Manufactured Nanomaterials. https://www.oecd.org/chemicalsafety/oecd-countries-address-the-safety-of-manufactured-nanomaterials.htm.

Peng, C., Tong, H., Shen, C., Sun, L., Yuan, P., He, M., Shi, J. (2020). Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Science of The Total Environment, 713: 136662. https://doi.org/10.1016/j.scitotenv.2020.136662.

Pérez‐Hernández, H., Fernández‐Luqueño, F., Huerta‐Lwanga, E., Mendoza‐Vega, J., Álvarez‐Solís J. D. (2020). Effect of engineered nanoparticles on soil biota: Do they improve the soil quality and crop production or jeopardize them? Land Degradation & Development, 31(16): 2213-2230.https://doi.org/10.1002/ldr.3595.

Pérez-Hernández, H., Pérez-Moreno, A., Sarabia-Castillo, C. R., García-Mayagoitia, S., Medina-Pérez, G., López-Valdez, F., Campos-Montiel, R. G., Jayanta-Kumar, P., Fernández-Luqueño, F. (2021). Ecological drawbacks of nanomaterials produced on an industrial scale: collateral effect on human and environmental health. Water, Air, and Soil Pollution, 232(10): 435. https://doi.org/10.1007/s11270-021-05370-2.

Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6): 151. https://doi.org/10.3390/plants8060151.

Peyrot, C., Wilkinson, K. J., Desrosiers, M., Sauvé, S. (2014). Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry, 33(1): 115-125. https://doi.org/10.1002/etc.2398.

Qian, Y., Yao, J., Russel, M., Wang, X., Sandy, E. H. (2016). Exploring medium‐term impact of oxide nanoparticles on soil microbial activity by isothermal microcalorimetry and urease assay. Environmental Progress & Sustainable Energy, 35(2): 395-403. https://doi.org/10.1002/ep.12245.

Qu, H., Ma, C., Xing, W., Xue, L., Liu, H., White, J. C., ... y Xing, B. (2022). Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm. Journal of Hazardous Materials, 424: 127676. https://doi.org/10.1016/j.jhazmat.2021.127676.7.

Quiterio-Gutiérrez, T., Ortega-Ortiz, H., Cadenas-Pliego, G., Hernández-Fuentes, A. D., Sandoval-Rangel, A., Benavides-Mendoza, A., Cabrera-De la Fuente, M., Juárez-Maldonado, A. (2019). The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences, 20(8): 1950. https://doi.org/10.3390/ijms20081950.

Raj, S. N., Anooj, E. S., Rajendran, K., Vallinayagam, S. (2021). A comprehensive review on regulatory invention of nano pesticides in agricultural nano formulation and food system. Journal of Molecular Structure, 130517. https://doi.org/10.1016/j.molstruc.2021.130517.

Rajput, V., Minkina, T., Mazarji, M., Shende, S., Sushkova, S., Mandzhieva, S., Burachevskaya, M., Chaplygin, V., Singh, A., Jatav, H. (2020). Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annals of Agricultural Sciences, 65(2): 137-143. https://doi.org/10.1016/j.aoas.2020.08.001.

Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N., Biswas, P. (2016). Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 7, 1288. https://doi.org/10.3389/fpls.2016.01288.

Rawtani, D., Rao, P. K., Hussain, C. M. (2020). Recent advances in analytical, bioanalytical and miscellaneous applications of green nanomaterial. TrAC Trends in Analytical Chemistry, 116109. https://doi.org/10.1016/j.trac.2020.116109.

Rico, C. M., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2015). Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. En Nanotechnology and plant sciences. Cham, Suwitzerland: Springer, 1-17.

Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A. et al. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214: 269-277. https://doi.org/10.1016/j.chemosphere.2018.09.120.

Romero‐Freire, A., Lofts, S., Martín Peinado, F. J., Van Gestel, C. A. (2017). Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei. Environmental Toxicology and Chemistry, 36(1): 137-146. https://doi.org/10.1002/etc.3512.

Romero, I. C. M. (2020). Principios para la supervisión y regulación de nanomateriales y nanotecnología. Literatura gris, 2020: 1-24. Universidad Militar Nueva Granada, Colombia. https://doi.org/10.18359/litgris.5074.

Salama, D. M., Osman, S. A., Abd El-Aziz, M. E., Abd Elwahed, M. S., Shaaban, E. A. (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology, 18: 101083. https://doi.org/10.1016/j.bcab.2019.101083.

Saleem, H., Zaidi, S. J. (2020). Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials, 10(12): 2411. https://doi.org/10.3390/nano10122411.

Saleh, T. A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 101067. https://doi.org/10.1016/j.eti.2020.101067.

Schimpf, M. G., Milesi, M. M., Zanardi, M. V., Varayoud, J. (2021). Disruption of developmental programming with long-term consequences after exposure to a glyphosate-based herbicide in a rat model. Food and Chemical Toxicology, 112695. https://doi.org/10.1016/j.fct.2021.112695.

Shafiq, F., Iqbal, M., Ali, M., Ashraf, M. A. (2019). Seed pre-treatment with polyhydroxy fullerene nanoparticles confer salt tolerance in wheat through upregulation of H2O2 neutralizing enzymes and phosphorus uptake. Journal of Soil Science and Plant Nutrition, 19(4): 734-742.

Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., ... y Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1): 101207. https://doi.org/10.1016/j.jksus.2020.10.004.

Sharma, P., Pandey, V., Sharma, M. M. M., Patra, A., Singh, B., Mehta, S., Husen, A. (2021). A review on biosensors and nanosensors application in agroecosystems. Nanoscale Research Letters, 16(1): 1-24. https://doi.org/10.1186/s11671-021-03593-0.

Simonin, M., Colman, B. P., Anderson, S. M., King, R. S., Ruis, M. T., Avellan, A., Bergemann, C. M., Perrotta, B. G., Geitner, N. K., Ho, Mengchi, De la Barrera, B., Unrine, J. M., Lowry, G. V., Richardson, C. J., Wiesner, M. R., Bernhardt, E. S. (2018). Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecological Applications, 28: 1435-1449. https://doi.org/10.1002/eap.1742.

Sotoodehnia-Korani, S., Iranbakhsh, A., Ebadi, M., Majd, A., Ardebili, Z. O. (2020). Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environmental Pollution, 265: 114727. https://doi.org/10.1016/j.envpol.2020.114727.

Srivastava, A. K., Dev, A., Karmakar, S. (2018). Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters, 16(1): 161-182. https://doi.org/10.1007/s10311-017-0674-7.

Stevens, A. W. (2018). Review: The economics of soil health. Food Policy, 89: 1-9. https://doi.org/10.1016/j.foodpol.2018.08.005.

Sun, L., Xue, Y., Peng, C., Xu, C., Shi, J. (2020). Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere. Environmental Pollution, 257: 113608. https://doi.org/10.1016/j.envpol.2019.113608.

Sundaria, N., Singh, M., Upreti, P., Chauhan, R. P., Jaiswal, J. P., Kumar, A. (2019). Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. Journal of Plant Growth Regulation, 38(1): 122-131.https://doi.org/10.1007/s00344-018-9818-7.

Surendranath, A., Mohanan, P. V. (2021). Impact of nanoparticles in balancing the ecosystem. Biointerface Research in Aplied Chemistry, 11(3): 10461-10481. https://doi.org/10.33263/BRIAC113.1046110481.

Tarannum, N., Divya, Y. K. Gautam. (2019). Facile green synthesis and applicatoins of silver nanoparticles: A state-of-the-art review. RSC Advances, 60.

Temizel-Sekeryan, S., Hicks, A. L. (2020). Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resources, Conservation and Recycling, 156: 104676. https://doi.org/10.1016/j.resconrec.2019.104676.

Thangadurai, D., Shettar, A. K., Sangeetha, J., Adetunji, C. O., Islam, S., Al-Tawaha, A. R. M. S. (2021). Nanosensors for detection and evaluation of organic compounds in soil. En Nanomaterials for soil remediation. Elsevier, 205-219.

Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., Dubey, N. K. (2015). Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiology and Biochemistry, 96: 189-198. https://doi.org/10.1016/j.plaphy.2015.07.026.

Tripathi, D. K., Tripathi, A., Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., ... y Chauhan, D. K. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in Microbiology, 8: 7. https://doi.org/10.3389/fmicb.2017.00007.

Tümay, S. O., Şenocak, A., Sarı, E., Şanko, V., Durmuş, M., Demirbas, E. (2021). A new perspective for electrochemical determination of parathion and chlorantraniliprole pesticides via carbon nanotube-based thiophene-ferrocene appended hybrid nanosensor. Sensors and Actuators B: Chemical, 130344. https://doi.org/10.1016/j.snb.2021.130344.

Umapathi, R., Sonwal, S., Lee, M. J., Rani, G. M., Lee, E. S., Jeon, T. J., Huh, Y. S. (2021). Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Reviews, 446, 214061. https://doi.org/10.1016/j.ccr.2021.214061.

Ur Rahim, H., Qaswar, M., Uddin, M., Giannini, C., Herrera, M. L., Rea, G. (2021). Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials, 11(8): 2068. https://doi.org/10.3390/nano11082068.

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., Ashraf, I., Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721: 137778. https://doi.org/10.1016/j.scitotenv.2020.137778.

Van Dijk, H., Fischer, A. R., Marvin, H. J., Van Trijp, H. C. (2017). Determinants of stakeholders’ attitudes towards a new technology: nanotechnology applications for food, water, energy and medicine. Journal of Risk Research, 20(2): 277-298. https://doi. org/10.1080/13669877.2015.1057198.

Verma, S., Nizam, S., Verma, P. K. (2013). Biotic an abiotic stress signaling in plants. En Sarwat Mryam, Ahmad Altaf y Abdin MZ (eds.), Stress signaling in plants: genomics and proteomics perspectives, 1: 25-49.

Wang, D., Jaisi, D. P., Yan, J., Jin, Y., Zhou, D. (2015). Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils. Vadose Zone Journal, 14(7). https://doi.org/10.2136/vzj2015.01.0007.

Wang, M., Gao, B., Tang, D. (2016). Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 318: 233-246. https://doi.org/10.1016/j.jhazmat.2016.06.065.

Wei, W. J., Li, L., Gao, Y. P., Wang, Q., Zhou, Y. Y., Liu, X., Yang, Y. (2021). Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. Science of the Total Environment, 777: 146038. https://doi.org/10.1016/j.scitotenv.2021.146038.

Wu, H., Nißler, R., Morris, V., Herrmann, N., Hu, P., Jeon, S. J., Kruss, S., Giraldo, J. P. (2020). Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano letters, 20(4): 2432-2442. https://doi.org/10.1021/acs.nanolett.9b05159.

Xiaohong, L. I. U., Juan, W. A. N. G., Lingli, W. U., Zhang, L., Youbin, S. I. (2021). Impacts of silver nanoparticles on enzymatic activities, nitrifying bacteria, and nitrogen transformation in soil amended with ammonium and nitrate. Pedosphere, 31(6): 934-943. https://doi.org/10.1016/S1002-0160(21)60036-X.

Xin, X., Zhao, F., Zhao, H., Goodrich, S. L., Hill, M. R., Sumerlin, B. S., Stoffella, P. J., Wright, A. L., He, Z. (2020). Comparative assessment of polymeric and other nanoparticles impacts on soil microbial and biochemical properties. Geoderma, 367: 114278. https://doi.org/10.1016/j.geoderma.2020.114278.

Xing, Y., Yi, R., Yang, H., Xu, Q., Huang, R., Tang, J., ... y Yu, J. (2021). Antifungal effect of chitosan/nano-TiO2 composite coatings against colletotrichum gloeosporioides, Cladosporium oxysporum and Penicillium steckii. Molecules, 26(15): 4401. https://doi.org/10.3390/molecules26154401.

Yang, W., Cheng, P., Adams, C. A., Zhang, S., Sun, Y., Yu, H., Wang, F. (2021). Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry, 155: 108179. https://doi.org/10.1016/j.soilbio.2021.108179.

Younis, S. A., Ki, H. K., Sabry, M. S., Vasileios, A., Yiu, F. T, Jörg, R., Akash, D., Brown, R. J. C. (2021). Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renewable and Sustainable Energy Reviews, 152. https://doi.org/10.1016/j.rser.2021.111686.

Zahedi, S. M., Moharrami, F., Sarikhani, S., Padervand, M. (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific reports, 10(1): 1-18. https://doi.org/10.1038/s41598-020-74273-9.

Zhai, Y., Chen, L., Liu, G., Song, L., Arenas-Lago, D., Kong, L., Peijnenburg, W., Vijver, M. G. (2021). Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration. Science of the Total Environment, 773: 144895. https://doi.org/10.1016/j.scitotenv.2020.144895.

Zhai, Y., Hunting, E. R., Liu, G., Baas, E., Peijnenburg, W. J., Vijver, M. G. (2019). Compositional alterations in soil bacterial communities exposed to TiO2 nanoparticles are not reflected in functional impacts. Environmental research, 178: 108713. https://doi.org/10.1016/j.envres.2019.108713.

Zhang, H., Yue, M., Zheng, X., Xie, C., Zhou, H., Li, L. (2017). Physiological effects of single-and multi-walled carbon nanotubes on rice seedlings. IEEE Transactions on Nanobioscience, 16(7): 563-570. https://doi.org/10.1109/TNB.2017.2715359.

Zhao, J., Tang, J., Dang, T. (2022). Influence of extracellular polymeric substances on the heteroaggregation between CeO2 nanoparticles and soil mineral particles. Science of The Total Environment, 806: 150358. https://doi.org/10.1016/j.s.citotenv.2021.150358.

Zhao, S., Su, X., Wang, Y., Yang, X., Bi, M., He, Q., Chen, Y. (2020). Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere, 245: 125394. https://doi.org/10.1016/j.chemosphere.2019.125394.

Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., ... y Ji, R. (2020). Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of agricultural and food chemistry, 68(7): 1935-1947. https://doi.org/10.1021/acs.jafc.9b06615.

Zhou, D. M., Jin, S. Y., Wang, Y. J., Wang, P., Weng, N. Y., Wang, Y. (2012). Assessing the impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in soils. Soil and Sediment Contamination: An International Journal, 21(1): 101-114. https://doi.org/10.1080/15320383.2012.636778.

Zhu, Y., Wu, J., Chen, M., Liu, X., Xiong, Y., Wang, Y., Fen, T., Kang, S., Wang, X. (2019). Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere, 237: 124403. https://doi.org/10.1016/j.chemosphere.2019.124403.

Publicado
2023-04-03
Cómo citar
Hernández, H., López-Valdez, F., Juárez-Maldonado, A., Méndez-López, A., Sarabia-Castillo, C., García-Mayagoitia, S., Torres-Gómez, A., Valle-García, J., & Pérez-Moreno, A. (2023). Implicaciones de los nanomateriales utilizados en la agricultura: una revisión de literatura de los beneficios y riesgos para la sustentabilidad. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 17(32), 1e-50e. https://doi.org/10.22201/ceiich.24485691e.2024.32.69720