Extracción de quitina de Aspergillus niger asistida por ondas de choque: caracterización fisicoquímica y eléctrica

  • Blanca Edith Millán-Chiu Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada, Querétaro, Qro., México. https://orcid.org/0000-0001-5198-639X
  • Eduardo Abel Alarcón Flores Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada, Posgrado en Ciencia e Ingeniería de Materiales, Querétaro, Qro., México. http://orcid.org/0000-0002-5499-2506
  • Eduardo Ortiz-Olan Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada, licenciatura en Tecnología, Querétaro, Qro., México. http://orcid.org/0000-0002-8323-9441
  • Francisco Fernández Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada, Querétaro, Qro., México. http://orcid.org/0000-0001-7494-7596
  • Achim M. Loske Universidad Nacional Autónoma de México, Centro de Física Aplicada y Tecnología Avanzada, Querétaro, Qro., México. http://orcid.org/0000-0002-9873-5165
Palabras clave: Aspergillus niger, Ondas de choque, películas de quitina, resistividad eléctrica

Resumen

La quitina es un polisacárido lineal producido por especies animales y fúngicas. Una de sus principales fuentes de obtención es el hongo Aspergillus niger, cultivado en biorreactores industriales. Es un biopolímero neutro que modifica las propiedades eléctricas de los materiales compuestos, una característica muy útil para algunos dispositivos electrónicos. Nuestro objetivo en este trabajo fue la caracterización fisicoquímica de películas de quitina, extraída de dicho hongo por un método químico asistido por ondas de choque y calor, así como también determinar su resistividad eléctrica al aplicarle altos voltajes (entre 10 y 20 kV). Las ondas de choque se utilizaron en este estudio porque se sabe que inducen poros en las células y podrían promover la entrada de álcali en la hifa, permitiendo una mejor eliminación de los componentes celulares residuales. La quitina fue neutralizada, secada y se formaron películas. Los valores de proteína residual se cuantificaron con la técnica de ácido bicinconínico (BCA), obteniendo películas con bajas cantidades de proteína. La caracterización del morfotipo específico extraído se estimó mediante infrarrojo transformado de Fourier (FTIR) y difracción de rayos X (XRD). Para evaluar la resistividad ante voltajes elevados, se diseñó un circuito especial que permitió detectar variaciones significativas de esta con respecto al voltaje aplicado, es decir, la quitina mostró un comportamiento coincidente con un varistor no lineal y, hasta donde sabemos, este es el primer informe de dicho comportamiento para la quitina. 

Citas

Aylanc, Volkan, Seymanur Ertosun, Lalehan Akyuz, Behlul Koc Bilican, Semih Gokdag, Ismail Bilican, Yavuz Selim Cakmak, Bahar Akyuz Yilmaz y Murat Kaya. (2020). Natural β-chitin-protein complex film obtained from waste razor shells for transdermal capsaicin carrier. International Journal of Biological Macromolecules, 155: 508-515. https://doi.org/10.1016/j.ijbiomac.2020.03.232.

Baird, David C. (1994). Experimentation: an introduction to measurement theory and experiment design, 3a ed. rev. EUA: Addison-Wesley Professional.

Cárdenas, Galo, Gustavo Cabrera, Edelio Taboaday S. y Patricia Miranda. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4): 1876-1885. https://doi.org/10.1002/app.20647.

Crini, Grégorio. (2019). Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters, 17: 1623-1643. https://doi.org/10.1007/s10311-019-00901-0.

Cuong, Hoang Ngoc, Nguyen Cong Minh, Nguyen Van Hoa y Trang Si Trung. (2016). Preparation and characterization of high purity β-chitin from squid pens (Loligo chenisis). International Journal of Biological Macromolecules, 93(A): 442-447. https://doi.org/10.1016/j.ijbiomac.2016.08.085.

Chen, Yong-Ming, Sami Pekdemir, Ismail Bilican, Behlul Koc-Bilican, Betul Cakmak, Asad Ali, Lian-Sheng Zang, M. Serdar Onses y Murat Kaya. (2021). Production of natural chitin film from pupal shell of moth: Fabrication of plasmonic surface for SERS-based sensing applications. Carbohydrate Polymers, 262: 117909. https://doi.org/10.1016/j.carbpol.2021.117909.

Choi, M. J., A. J. Coleman y J. E. Saunders. 1993. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter. Physics in Medicine and Biology, 38: 1561-1573. https://doi.org/10.1088/0031-9155/38/11/002.

Cleveland, Robin O. y James A. McAteer. (2007). The physics of shock wave lithotripsy. En Arthur D. Smith, Gopal H. Badlani, Demetrius H. Bagley, R. V. Clayman, S. G. Docimo, Gerald H. Jordan, Louis R. Kavoussi, Benjamin R. Lee, James E. Lingeman, Glenn M. Preminger y J. W. Segura (eds.), Smith’s textbook on endourology. Hamilton, Ontario, Canadá: BC Decker, Inc., 317-332.

Farinha, Inês, Paulo Duarte, Ana Pimentel, Evgeniya Plotnikova, Bárbara Chagas, Luís Mafra, Christian Grandfils, Filomena Freitas, Elvira Fortunato y María A. M. Reis. (2015). Chitin-glucan complex production by Komagataella pastoris: Downstream optimization and product characterization. Carbohydrate Polymers, 130: 455-464. https://doi.org/10.1016/j.carbpol.2015.05.034.

He, Jinliang. (2019). Introduction of varistor ceramics. En Jinliang He (ed.), Metal oxide varistors: From microstructure to macro-characteristics, 1-22. Weinheim, Germany: Wiley-VCH.

Hirano, Shigehiro. (1996). Chitin biotechnology applications. Biotechnology Annual Review, 2(C): 237-258. https://doi.org/10.1016/S1387-2656(08)70012-7.

Jang, Mi-Kyeong, Byeong-Gi Kong, Young-Il Jeong, Chang Hyung Lee y Jae-Woon Nah. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science, Part A: Polymer Chemistry, 42(14): 3423-3432. https://doi.org/10.1002/pola.20176.

Johnsen, Eric y Tim Colonius. (2008). Shock-induced collapse of a gas bubble in shock wave lithotripsy. Journal of the Acoustical Society of America, 124(4): 2011-020. https://doi.org/10.1121/1.2973229.

Jones, Mitchell, Marina Kujundzic, Sabu John y Alexander Bismarck. (2020). Crab vs mushroom: a review of crustacean fungal chitin in wound treatment. Marine Drugs, 18(1): 64. https://doi.org/10.3390/md18010064.

Kamalov, Almaz, Elena Dresvyanina, Margarita Borisova, Natalia Smirnova, Konstantin Kolbe y Vladimir Yudin. (2020). The effect of electrical conductivity of films based on chitosan and chitin on the bioactivity of human dermal fibroblasts. Materials Today: Proceedings, 30(3): 798-801. https://doi.org/10.1016/j.matpr.2020.02.346.

Kaur, Surinder y Gurpreet Singh Dhillon. 2015. Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical Reviews in Biotechnology, 35(1): 44-61. https://doi.org/10.3109/07388551.2013.798256.

Larrañaga-Ordaz, Daniel, Miguel A. Martínez-Maldonado, Blanca E. Millán-Chiu, Francisco Fernández, Eduardo Castaño-Tostado, Miguel Ángel Gómez-Lim y Achim M. Loske. (2022). Effect of shock waves on the growth of Aspergillus niger conidia: Evaluation of germination and preliminary study on gene expression. Journal of Fungi, 8(11): 1117. https://doi.org/10.3390/jof8111117.

Lohrer, Heinz y Ludger Gerdesmeyer. (2014). Shock wave therapy in practice: Multidisciplinary medical applications. Heilbronn, Alemania: Level 10.

Loske, Achim M. (2017). Medical and biomedical applications of shock waves. Cham, Suiza: Springer International Publishing. https://doi.org/10.1007/978-3-319-47570-7.

Loske, Achim M., Francisco Fernández, Denis Magaña-Ortíz, Nancy Cocconi-Linares, Elizabeth Ortíz-Vázquez y Miguel A. Gómez-Lim. (2014). Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics, 54(6): 1656-1662. https://doi.org/10.1016/j.ultras.2014.03.003.

Lukes, P., F. Fernández, J. Gutiérrez-Aceves, E. Fernández, U. M. Álvarez, P. Sunka y A. M. Loske. (2016). Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves, 26(1): 1-23. https://doi.org/10.1007/s00193-015-0577-0.

Molina, Gustavo A., Fanny González-Fuentes, Achim M. Loske, Francisco Fernández y Miriam Estevez. (2020). Shock wave-assisted extraction of phenolic acids and flavonoids from Eysenhardtia polystachya heartwood: a novel method and its comparison with conventional methodologies. Ultrasonics Sonochemistry, 61(3): 104809. https://doi.org/10.1016/j.ultsonch.2019.104809.

Nawawi, Wan M. F. B. W., Mitchell Jones, Richard J. Murphy, Koon-Yang Lee, Eero Kontturi, y Alexander Bismarck. (2020). Nanomaterials derived from fungal sources-Is it the new hype? Biomacromolecules, 21(1): 30-55. https://doi.org/10.1021/acs.biomac.9b01141.

Ntana, Fani, Uffe Hasbro Mortensen, Catherine Sarazin y Rainer Figge. (2020). Aspergillus: a powerful protein production platform. Catalysts, 10: 1064. https://doi.org/10.3390/catal10091064.

Ohl, C. D. y R. Ikink. (2003). Shock-wave-induced jetting of micron-size bubble. Physical Review Letters, 90(21): 214502 (1-4). https://doi.org/10.1103/PhysRevLett.90.214502.

Philibert, Tuyishime, Byong H. Lee y Nsanzabera Fabien. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology, 181: 1314-1337. https://doi.org/10.1007/s12010-016-2286-2.

Philipp, A., M. Delius, C. Scheffczyk, A. Vogel y W. Lauterborn. (1993). Interaction of lithotripter generated shock waves with air bubbles. Journal of the Acoustical Society of America, 93:2496-2509. https://doi.org/10.1121/1.406853.

Ponnamma, D., K. K. Sadasivuni y M. A. AlMaadeed. 2017. Introduction of biopolymer composites: What to do in electronics? En K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan y M. A. AlMaadeed (eds.), Biopolymer composites in electronics. Elsevier, 1-12. https://doi.org/10.1016/B978-0-12-809261-3.00001-2.

Posch, Andreas E., Christoph Herwig y Oliver Spadiut. 2013. Science-based bioprocess design for filamentous fungi. Trends in Biotechnology, 31(1): 37-44. https://doi.org/10.1016/j.tibtech.2012.10.008.

Rahman, M. Aizuddin Abdul, Shahrom Mahmud, Rabab Khalid Sendi y Abdul Karim Alias. (2012). Varistor-like effect in zinc oxide bionanocomposite. Advanced Materials Research, 626: 743-746. https://doi.org/10.4028/www.scientific.net/AMR.626.743.

Salaberría, A. M., R. Teruel-Juanes, J. D. Badia, S. C. M. Fernandes, V. Sáenz de Juano-Arbona, J. Labidi y A. Ribes-Greus. (2018). Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 167: 323-330. https://doi.org/10.1016/j.compscitech.2018.08.019.

Shahlaei, Mohsen y Alireza Pourhossein. (2013). Biomass of Aspergillus niger: uses and applications. Journal of Reports in Pharmaceutical Sciences, 2(1): 83-89.

Song, E. H., J. Shang y D. M. Ratner. (2012). Polysaccharides en Krzysztof Matyjaszewski y Martin Möller (eds.), Polymer science: a comprehensive reference, 9: 137-155. Elsevier Science. https://doi.org/10.1016/B978-0-444-53349-4.00246-6.

Tsurkan, Mikhail V., Alona Voronkina, Yuliya Khrunyk, Marcin Wysokowski, Iaroslav Petrenko y Hermann Ehrlich. (2021). Progress in chitin analytics. Carbohydrate Polymers, 252: 117204. https://doi.org/10.1016/j.carbpol.2020.117204.

Wang, Jinyu, Huan Chen, Xueqian Li, Chenggang Zhang, Wenchao Yu, Liang Zhou, Quanling Yang, Zhuqun Shi y Chuanxi Xiong. (2020). Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chemical Engineering Journal, 383: 123-147. https://doi.org/10.1016/j.cej.2019.123147.

Wang, Ziying, Zongtao Ma, Jingyao Sun, Yuhua Yan, Miaomiao Bu, Yanming Huo, Yun-Fei Li y Ning Hu. (2021). Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors. Polymers, 13(5): 813. https://doi.org/10.3390/polym13050813.

Wan-Nawawi, Wan Mohd Fazli, Koon-Yang Lee, Eero Kontturi y Alexander Bismarck. (2015). Strong and tough fungal based chitin-glucan thin film. ICCM International Conferences on Composite Materials, 20: 8.

Wu, Tao, Svetlana Zivanovic, F. Ann Draughon, William S. Conway y Carl E. Sams. (2005). Physicochemical properties and bioactivity of fungal chitin and chitosan. Journal of Agricultural and Food Chemistry, 53(10): 3888-3894. https://doi.org/10.1021/jf048202s.

Zhang, Renyun y Håkan Olin. (2020). Material choices for triboelectric nanogenerators: A critical review. EcoMat, 2(4): 1-13. https://doi.org/10.1002/eom2.12062.

Publicado
2023-05-23
Cómo citar
Millán-Chiu, B., Alarcón Flores, E., Ortiz-Olan, E., Fernández, F., & Loske, A. (2023). Extracción de quitina de Aspergillus niger asistida por ondas de choque: caracterización fisicoquímica y eléctrica. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 16(31), 1e-19e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69796