Shock wave-assisted extraction of chitin from Aspergillus niger: physicochemical and electrical characterization

Main Article Content

Blanca Edith Millán-Chiu
https://orcid.org/0000-0001-5198-639X
Eduardo Abel Alarcón Flores
http://orcid.org/0000-0002-5499-2506
Eduardo Ortiz-Olan
http://orcid.org/0000-0002-8323-9441
Francisco Fernández
http://orcid.org/0000-0001-7494-7596
Achim M. Loske
http://orcid.org/0000-0002-9873-5165

Abstract

Chitin is a linear polysaccharide produced by animal and fungal species. One of its sources is the fungus Aspergillus niger, which is culturable in industrial bioreactors. Chitin is a neutral biopolymer that modifies the electrical properties of composite materials. These are useful features in some electronic devices. This study aimed to carry out physicochemical characterizations of chitin films obtained from the above-mentioned fungus, using a chemical method enhanced with exposure to heat and shock waves, and to determine their electrical resistivity at high voltages (between 10 and 20 kV). Shock waves were used in this study because they are known to induce pores into cells and could promote alkali entry into the hypha, allowing better removal of residual cellular components. Chitin was neutralized, dried, and films were produced. Residual protein values were quantified by bicinchoninic acid assay (BCA). The films obtained had low amounts of protein. The characterization of the specific morphotype extracted was done by FTIR and XRD. An especially designed circuit revealed significant variations of the resistivity as the voltage was varied. This behavior is typical of a non-linear varistor and, to the best of our knowledge, has not been reported for chitin.

Article Details

How to Cite
Millán-Chiu, B. E., Alarcón Flores, E. A., Ortiz-Olan, E., Fernández, F., & Loske, A. M. (2023). Shock wave-assisted extraction of chitin from Aspergillus niger: physicochemical and electrical characterization. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 16(31), 1e-19e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69796
Section
Research articles

References

Aylanc, Volkan, Seymanur Ertosun, Lalehan Akyuz, Behlul Koc Bilican, Semih Gokdag, Ismail Bilican, Yavuz Selim Cakmak, Bahar Akyuz Yilmaz y Murat Kaya. (2020). Natural β-chitin-protein complex film obtained from waste razor shells for transdermal capsaicin carrier. International Journal of Biological Macromolecules, 155: 508-515. https://doi.org/10.1016/j.ijbiomac.2020.03.232.

Baird, David C. (1994). Experimentation: an introduction to measurement theory and experiment design, 3a ed. rev. EUA: Addison-Wesley Professional.

Cárdenas, Galo, Gustavo Cabrera, Edelio Taboaday S. y Patricia Miranda. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4): 1876-1885. https://doi.org/10.1002/app.20647.

Crini, Grégorio. (2019). Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters, 17: 1623-1643. https://doi.org/10.1007/s10311-019-00901-0.

Cuong, Hoang Ngoc, Nguyen Cong Minh, Nguyen Van Hoa y Trang Si Trung. (2016). Preparation and characterization of high purity β-chitin from squid pens (Loligo chenisis). International Journal of Biological Macromolecules, 93(A): 442-447. https://doi.org/10.1016/j.ijbiomac.2016.08.085.

Chen, Yong-Ming, Sami Pekdemir, Ismail Bilican, Behlul Koc-Bilican, Betul Cakmak, Asad Ali, Lian-Sheng Zang, M. Serdar Onses y Murat Kaya. (2021). Production of natural chitin film from pupal shell of moth: Fabrication of plasmonic surface for SERS-based sensing applications. Carbohydrate Polymers, 262: 117909. https://doi.org/10.1016/j.carbpol.2021.117909.

Choi, M. J., A. J. Coleman y J. E. Saunders. 1993. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter. Physics in Medicine and Biology, 38: 1561-1573. https://doi.org/10.1088/0031-9155/38/11/002.

Cleveland, Robin O. y James A. McAteer. (2007). The physics of shock wave lithotripsy. En Arthur D. Smith, Gopal H. Badlani, Demetrius H. Bagley, R. V. Clayman, S. G. Docimo, Gerald H. Jordan, Louis R. Kavoussi, Benjamin R. Lee, James E. Lingeman, Glenn M. Preminger y J. W. Segura (eds.), Smith’s textbook on endourology. Hamilton, Ontario, Canadá: BC Decker, Inc., 317-332.

Farinha, Inês, Paulo Duarte, Ana Pimentel, Evgeniya Plotnikova, Bárbara Chagas, Luís Mafra, Christian Grandfils, Filomena Freitas, Elvira Fortunato y María A. M. Reis. (2015). Chitin-glucan complex production by Komagataella pastoris: Downstream optimization and product characterization. Carbohydrate Polymers, 130: 455-464. https://doi.org/10.1016/j.carbpol.2015.05.034.

He, Jinliang. (2019). Introduction of varistor ceramics. En Jinliang He (ed.), Metal oxide varistors: From microstructure to macro-characteristics, 1-22. Weinheim, Germany: Wiley-VCH.

Hirano, Shigehiro. (1996). Chitin biotechnology applications. Biotechnology Annual Review, 2(C): 237-258. https://doi.org/10.1016/S1387-2656(08)70012-7.

Jang, Mi-Kyeong, Byeong-Gi Kong, Young-Il Jeong, Chang Hyung Lee y Jae-Woon Nah. (2004). Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. Journal of Polymer Science, Part A: Polymer Chemistry, 42(14): 3423-3432. https://doi.org/10.1002/pola.20176.

Johnsen, Eric y Tim Colonius. (2008). Shock-induced collapse of a gas bubble in shock wave lithotripsy. Journal of the Acoustical Society of America, 124(4): 2011-020. https://doi.org/10.1121/1.2973229.

Jones, Mitchell, Marina Kujundzic, Sabu John y Alexander Bismarck. (2020). Crab vs mushroom: a review of crustacean fungal chitin in wound treatment. Marine Drugs, 18(1): 64. https://doi.org/10.3390/md18010064.

Kamalov, Almaz, Elena Dresvyanina, Margarita Borisova, Natalia Smirnova, Konstantin Kolbe y Vladimir Yudin. (2020). The effect of electrical conductivity of films based on chitosan and chitin on the bioactivity of human dermal fibroblasts. Materials Today: Proceedings, 30(3): 798-801. https://doi.org/10.1016/j.matpr.2020.02.346.

Kaur, Surinder y Gurpreet Singh Dhillon. 2015. Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical Reviews in Biotechnology, 35(1): 44-61. https://doi.org/10.3109/07388551.2013.798256.

Larrañaga-Ordaz, Daniel, Miguel A. Martínez-Maldonado, Blanca E. Millán-Chiu, Francisco Fernández, Eduardo Castaño-Tostado, Miguel Ángel Gómez-Lim y Achim M. Loske. (2022). Effect of shock waves on the growth of Aspergillus niger conidia: Evaluation of germination and preliminary study on gene expression. Journal of Fungi, 8(11): 1117. https://doi.org/10.3390/jof8111117.

Lohrer, Heinz y Ludger Gerdesmeyer. (2014). Shock wave therapy in practice: Multidisciplinary medical applications. Heilbronn, Alemania: Level 10.

Loske, Achim M. (2017). Medical and biomedical applications of shock waves. Cham, Suiza: Springer International Publishing. https://doi.org/10.1007/978-3-319-47570-7.

Loske, Achim M., Francisco Fernández, Denis Magaña-Ortíz, Nancy Cocconi-Linares, Elizabeth Ortíz-Vázquez y Miguel A. Gómez-Lim. (2014). Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics, 54(6): 1656-1662. https://doi.org/10.1016/j.ultras.2014.03.003.

Lukes, P., F. Fernández, J. Gutiérrez-Aceves, E. Fernández, U. M. Álvarez, P. Sunka y A. M. Loske. (2016). Tandem shock waves in medicine and biology: a review of potential applications and successes. Shock Waves, 26(1): 1-23. https://doi.org/10.1007/s00193-015-0577-0.

Molina, Gustavo A., Fanny González-Fuentes, Achim M. Loske, Francisco Fernández y Miriam Estevez. (2020). Shock wave-assisted extraction of phenolic acids and flavonoids from Eysenhardtia polystachya heartwood: a novel method and its comparison with conventional methodologies. Ultrasonics Sonochemistry, 61(3): 104809. https://doi.org/10.1016/j.ultsonch.2019.104809.

Nawawi, Wan M. F. B. W., Mitchell Jones, Richard J. Murphy, Koon-Yang Lee, Eero Kontturi, y Alexander Bismarck. (2020). Nanomaterials derived from fungal sources-Is it the new hype? Biomacromolecules, 21(1): 30-55. https://doi.org/10.1021/acs.biomac.9b01141.

Ntana, Fani, Uffe Hasbro Mortensen, Catherine Sarazin y Rainer Figge. (2020). Aspergillus: a powerful protein production platform. Catalysts, 10: 1064. https://doi.org/10.3390/catal10091064.

Ohl, C. D. y R. Ikink. (2003). Shock-wave-induced jetting of micron-size bubble. Physical Review Letters, 90(21): 214502 (1-4). https://doi.org/10.1103/PhysRevLett.90.214502.

Philibert, Tuyishime, Byong H. Lee y Nsanzabera Fabien. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology, 181: 1314-1337. https://doi.org/10.1007/s12010-016-2286-2.

Philipp, A., M. Delius, C. Scheffczyk, A. Vogel y W. Lauterborn. (1993). Interaction of lithotripter generated shock waves with air bubbles. Journal of the Acoustical Society of America, 93:2496-2509. https://doi.org/10.1121/1.406853.

Ponnamma, D., K. K. Sadasivuni y M. A. AlMaadeed. 2017. Introduction of biopolymer composites: What to do in electronics? En K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan y M. A. AlMaadeed (eds.), Biopolymer composites in electronics. Elsevier, 1-12. https://doi.org/10.1016/B978-0-12-809261-3.00001-2.

Posch, Andreas E., Christoph Herwig y Oliver Spadiut. 2013. Science-based bioprocess design for filamentous fungi. Trends in Biotechnology, 31(1): 37-44. https://doi.org/10.1016/j.tibtech.2012.10.008.

Rahman, M. Aizuddin Abdul, Shahrom Mahmud, Rabab Khalid Sendi y Abdul Karim Alias. (2012). Varistor-like effect in zinc oxide bionanocomposite. Advanced Materials Research, 626: 743-746. https://doi.org/10.4028/www.scientific.net/AMR.626.743.

Salaberría, A. M., R. Teruel-Juanes, J. D. Badia, S. C. M. Fernandes, V. Sáenz de Juano-Arbona, J. Labidi y A. Ribes-Greus. (2018). Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites. Composites Science and Technology, 167: 323-330. https://doi.org/10.1016/j.compscitech.2018.08.019.

Shahlaei, Mohsen y Alireza Pourhossein. (2013). Biomass of Aspergillus niger: uses and applications. Journal of Reports in Pharmaceutical Sciences, 2(1): 83-89.

Song, E. H., J. Shang y D. M. Ratner. (2012). Polysaccharides en Krzysztof Matyjaszewski y Martin Möller (eds.), Polymer science: a comprehensive reference, 9: 137-155. Elsevier Science. https://doi.org/10.1016/B978-0-444-53349-4.00246-6.

Tsurkan, Mikhail V., Alona Voronkina, Yuliya Khrunyk, Marcin Wysokowski, Iaroslav Petrenko y Hermann Ehrlich. (2021). Progress in chitin analytics. Carbohydrate Polymers, 252: 117204. https://doi.org/10.1016/j.carbpol.2020.117204.

Wang, Jinyu, Huan Chen, Xueqian Li, Chenggang Zhang, Wenchao Yu, Liang Zhou, Quanling Yang, Zhuqun Shi y Chuanxi Xiong. (2020). Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chemical Engineering Journal, 383: 123-147. https://doi.org/10.1016/j.cej.2019.123147.

Wang, Ziying, Zongtao Ma, Jingyao Sun, Yuhua Yan, Miaomiao Bu, Yanming Huo, Yun-Fei Li y Ning Hu. (2021). Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors. Polymers, 13(5): 813. https://doi.org/10.3390/polym13050813.

Wan-Nawawi, Wan Mohd Fazli, Koon-Yang Lee, Eero Kontturi y Alexander Bismarck. (2015). Strong and tough fungal based chitin-glucan thin film. ICCM International Conferences on Composite Materials, 20: 8.

Wu, Tao, Svetlana Zivanovic, F. Ann Draughon, William S. Conway y Carl E. Sams. (2005). Physicochemical properties and bioactivity of fungal chitin and chitosan. Journal of Agricultural and Food Chemistry, 53(10): 3888-3894. https://doi.org/10.1021/jf048202s.

Zhang, Renyun y Håkan Olin. (2020). Material choices for triboelectric nanogenerators: A critical review. EcoMat, 2(4): 1-13. https://doi.org/10.1002/eom2.12062.