Toxicidad de nanopartículas de óxidos metálicos en ambientes acuáticos

Contenido principal del artículo

Ivan Toledo Manuel
https://orcid.org/0000-0001-9498-5506
José Emmanuel Ambrosio Juárez
https://orcid.org/0009-0006-8565-9171
Abraham López Miguel
https://orcid.org/0000-0001-5340-2263
Coraquetzali Magdaleno López
https://orcid.org/0000-0002-9756-5766

Resumen

Las nanopartículas de óxidos metálicos se encuentran entre los nanomateriales más utilizados en diversos sectores, como la medicina, la agricultura, la industria alimentaria y los dispositivos electrónicos, debido a sus propiedades funcionales, como gran área superficial, estabilidad química y actividad antimicrobiana. Sin embargo, su creciente producción y uso han incrementado su liberación al medio ambiente, especialmente en ecosistemas acuáticos. Diversos estudios han demostrado que estas NPs pueden inducir efectos tóxicos en organismos acuáticos afectando el equilibrio ecológico. La toxicidad depende de factores como el tipo de óxido metálico, el tamaño de las NPs, la carga superficial y su comportamiento en medios acuosos. En esta revisión se analizan las características fisicoquímicas de las nanopartículas de dióxido de titanio (NPs TiO2), de óxido de zinc (NPs ZnO) y de óxido de cobre (NPs CuO). La revisión resume los mecanismos de acción y la toxicidad asociada con estas NPs con el objetivo de proporcionar una visión general sobre su impacto ecológico y los desafíos actuales en su evaluación y regulación.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Toledo Manuel, I., Ambrosio Juárez, J. E., López Miguel, A., & Magdaleno López, C. (2025). Toxicidad de nanopartículas de óxidos metálicos en ambientes acuáticos. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(36), e69873. https://doi.org/10.22201/ceiich.24485691e.2026.36.69873
Sección
Artículos de revisión

Citas

Ahmad, M. M., S. Mushtaq, H. S. Al Qahtani, A. Sedky y M. W. Alam. (2021). Investigation of TiO₂ nanoparticles synthesized by sol-gel method for effectual photode- gradation, oxidation and reduction reaction. Crystals, 11(12): 1456. https://doi.org/10.3390/cryst11121456. DOI: https://doi.org/10.3390/cryst11121456

Alak, G. (2024). Nanotoxicology. En M. Atamanalp, G. Alak, A. Uςar y V. Parlak (eds.), Aquatic toxicology in freshwater. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-56669-1_9. DOI: https://doi.org/10.1007/978-3-031-56669-1_9

Al-Ammari, A., L. Zhang, J. Yang, F. Wei, C. Chen y D. Sun. (2021). Toxicity assessment of synthesized titanium dioxide nanoparticles in freshwater algae Chlorella pyrenoidosa and a zebrafish liver cell line. Ecotoxicology and Environmental Safety, 211: 111948. https://doi.org/10.1016/j.ecoenv.2021.111948. DOI: https://doi.org/10.1016/j.ecoenv.2021.111948

Ale, A., M. F. Gutiérrez, A. S. Rossi, C. Bacchetta, M. F. Desimone y J. Cazenave. (2021). Ecotoxicity of silica nanoparticles in aquatic organisms: an updated review. Environmental Toxicology and Pharmacology, 87: 103689. https://doi.org/10.1016/j.etap.2021.103689. DOI: https://doi.org/10.1016/j.etap.2021.103689

Alhadrami, H. A., H. M. Hassan, A. H. Alhadrami, M. E. Rateb y A. A. Hamed. (2025). Green synthesis and anticancer activity of titanium dioxide nanoparticles using the endophytic fungus Aspergillus sp. Journal of Radiation Research and Applied Sciences, 18(1): 101229. https://doi.org/10.1016/j.jrras.2024.101229. DOI: https://doi.org/10.1016/j.jrras.2024.101229

Alho, L. D. O. G., J. P. Souza, G. S. Rocha, A. da Silva Mansano, A. T. Lombardi, H. Sarmento, y M. G. G. Melão. (2020). Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae. Environmental Pollution, 265: 114856. https://doi.org/10.1016/j.envpol.2020.114856. DOI: https://doi.org/10.1016/j.envpol.2020.114856

Baker, T. J., C. R. Tyler y T. S. Galloway. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186: 257-271. https://doi.org/10.1016/j.envpol.2013.11.014. DOI: https://doi.org/10.1016/j.envpol.2013.11.014

Bathi, J. R., F. Moazeni, V. K. Upadhyayula, I. Chowdhury, S. Palchoudhury, G. E. Potts y V. Gadhamshetty. (2021). Behavior of engineered nanoparticles in aquatic environmental samples: current status and challenges. Science of the Total Environment, 793: 148560. https://doi.org/10.1016/j.scitotenv.2021.148560. DOI: https://doi.org/10.1016/j.scitotenv.2021.148560

Bordin, E. R., W. A. Ramsdorf, L. M. Lotti Domingos, L. P. de Souza Miranda, N. P. Mattoso Filho y M. M. Cestari. (2024). Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: current research and emerging trends. Journal of Environmental Management. Academic Press. https://doi.org/10.1016/j.jenvman.2023.119396. DOI: https://doi.org/10.1016/j.jenvman.2023.119396

Brun, N. R., B. E. Koch, M. Varela, W. J. Peijnenburg, H. P. Spaink y M. G. Vijver. (2018). Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environmental Science: Nano, 5(4): 904-916. DOI: https://doi.org/10.1039/C8EN00002F

Čapek, J. y T. Roušar. (2021). Detection of oxidative stress induced by nanomaterials in cells — The roles of reactive oxygen species and glutathione. Molecules, 26(16): 4710. https://doi.org/10.3390/molecules26164710. DOI: https://doi.org/10.3390/molecules26164710

Chandoliya, R., S. Sharma, V. Sharma, R. Joshi y I. Sivanesan. (2024). Titanium dioxide nanoparticle: a comprehensive review on synthesis, applications and toxicity. Plants, 13(21): 2964. https://doi.org/10.3390/plants13212964. DOI: https://doi.org/10.3390/plants13212964

Chávez-Hernández, J. A., Velarde-Salcedo, A. J., Navarro-Tovar, G. y González, C. (2024). Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale Advances, 15 de enero. Royal Society of Chemistry. https://doi.org/10.1039/d3na01097j. DOI: https://doi.org/10.1039/D3NA01097J

Cheung, B. C. T., Leong, J. C. H., Chan, E. Y. Y., Chang, T. K. T., Lau, A. S. U., Lee, C. G. W., Wong, E. L. C., Tse, I. W. Y., Liu, L. D., Kwok, M. H., Chan, M. H. C., Ngai, T. y Chui, A. P. Y. (2024). Evaluating the effects of inorganic UV filter titanium dioxide nanoparticles (nano-TiO2 ) on early life stages of scleractinian coral Acropora tumida. Marine Pollution Bulletin, 209(Pt B), 117231. https://doi.org/10.1016/j.marpolbul.2024.117231. DOI: https://doi.org/10.1016/j.marpolbul.2024.117231

Domingues, L. A. C. S., G. M. Carriello, G. M. Pegoraro y G. P. Mambrini. (2024). Synthesis of TiO₂ nanoparticles by the solvothermal method and application in the catalysis of esterification reactions. Anais da Academia Brasileira de Ciências, 96(suppl 3): e20240096. https://doi.org/10.1590/0001-3765202420240096. DOI: https://doi.org/10.1590/0001-3765202420240096

Du, X., W. Zhou, W. Zhang, S. Sun, Y. Han, Y. Tang, W. Shi y G. Liu. (2021). Toxicities of three metal oxide nanoparticles to a marine microalga: impacts on the motility and potential affecting mechanisms. Environmental Pollution, 290: 118027. https://doi.org/10.1016/j.envpol.2021.118027. DOI: https://doi.org/10.1016/j.envpol.2021.118027

Dube, E. y G. E. Okuthe. (2023). Engineered nanoparticles in aquatic systems: toxicity and mechanism of toxicity in fish. Emerging Contaminants, 9(2): 100212. https://doi.org/10.1016/j.emcon.2023.100212. DOI: https://doi.org/10.1016/j.emcon.2023.100212

Dubey, R. S., K. V. Krishnamurthy y S. Singh. (2019). Experimental studies of TiO₂ nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Results in Physics, 14: 102390. https://doi.org/10.1016/j.rinp.2019.102390. DOI: https://doi.org/10.1016/j.rinp.2019.102390

Dubourg, G., Z. Pavlović, B. Bajac, M. Kukkar, N. Finčur, Z. Novaković y M. Radović. (2024). Advancement of metal oxide nanomaterials on agri-food fronts. Science of the Total Environment, 928. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2024.172048. DOI: https://doi.org/10.1016/j.scitotenv.2024.172048

Eisler, R. (2000). Handbook of chemical risk assessment: health hazards to humans, plants, and animals. 3 vols. https://doi.org/10.1201/9780367801397. DOI: https://doi.org/10.1201/9781420032741

Fard, J. K., S. Jafari y M. A. Eghbal. (2015). A review of molecular mechanisms involved in toxicity of nanoparticles. Advanced Pharmaceutical Bulletin, 5(4): 447-54. https://doi.org/10.15171/apb.2015.061. DOI: https://doi.org/10.15171/apb.2015.061

Fatima, A., S. Singh y S. M. Prasad. (2020). Interaction between copper oxide nanoparticles and plants: uptake, accumulation and phytotoxicity. En S. Hayat, J. Pichtel, M. Faizan y Q. Fariduddin (eds.), Sustainable agriculture reviews, 143-61. Springer. https://doi.org/10.1007/978-3-030-33996-8_8. DOI: https://doi.org/10.1007/978-3-030-33996-8_8

Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E. y Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl₂ to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science & Technology, 41(24), 8484-8490. https://doi.org/10.1021/es071445r. DOI: https://doi.org/10.1021/es071445r

Ghosh, S., A. Sadhu, A. H. Mandal et al. (2025). Copper oxide nanoparticles as an emergent threat to aquatic invertebrates and photosynthetic organisms: a synthesis of the known and exploration of the unknown. Current Pollution Reports, 11: 6. https://doi.org/10.1007/s40726-024-00334-6. DOI: https://doi.org/10.1007/s40726-024-00334-6

Giannetto, A., T. Cappello, S. Oliva, V. Parrino, G. De Marco, S. Fasulo et al. (2018). Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in arbacia lixula embryos. Aquatic Toxicology, 201: 187-97. https://doi.org/10.1016/j.aquatox.2018.06.010. DOI: https://doi.org/10.1016/j.aquatox.2018.06.010

Gomte, S. S., P. V. Jadhav, N. Jothi Prasath V. R., T. G. Agnihotri y A. Jain. (2024). From lab to ecosystem: understanding the ecological footprints of engineered nanoparticles. Journal of Environmental Science and Health, Part C, 42(1): 33-73. https://doi.org/10.1016/j.ecoenv.2012.02.017. DOI: https://doi.org/10.1080/26896583.2023.2289767

Handy, R. D., N. J. Clark, D. Boyle, J. Vassallo, C. Green, F. Nasser, T. L. Botha, V. Wepener, N. W. Van Den Brink y C. Svendsen. (2022). The bioaccumulation testing strategy for nanomaterials: correlations with particle properties and a meta-analysis of in vitro fish alternatives to in vivo fish tests. Environmental Science: Nano, 9(2): 684-701. https://doi.org/10.1039/D1EN00694K. DOI: https://doi.org/10.1039/D1EN00694K

Hao, L., y L. Chen. (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety, 80: 103-10. https://doi.org/10.1016/j.ecoenv.2012.02.017. DOI: https://doi.org/10.1016/j.ecoenv.2012.02.017

Rathi H., V. y A. Rejo Jeice. (2023). Green fabrication of titanium dioxide nanoparticles and their applications in photocatalytic dye degradation and microbial activities. Chemical Physics Impact, 6: 100197. https://doi.org/10.1016/j.chphi.2023.100197. DOI: https://doi.org/10.1016/j.chphi.2023.100197

Horie, Masanori, Haruhisa Kato, Katsuhide Fujita, Shigehisa Endoh y Hitoshi Iwahashi. (2012). Protein adsorption of ultrafine metal oxide nanoparticles analyzed by liquid chromatography-tandem mass spectrometry. Chemical Research in Toxicology, 25(3): 605-619. https://doi.org/10.1021/tx200470e. DOI: https://doi.org/10.1021/tx200470e

Horti, N. C., M. D. Kamatagi, N. R. Patil, S. K. Nataraj, M. S. Sannaikar y S. R. Inamdar. (2019). Synthesis and photoluminescence properties of titanium oxide (TiO₂) nanoparticles: effect of calcination temperature. Optik, 194: 163070. https://doi.org/10.1016/j.ijleo.2019.163070. DOI: https://doi.org/10.1016/j.ijleo.2019.163070

Hund-Rinke, K. y M. Simon. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO₂) on algae and daphnids. Environmental Science and Pollution Research International, 13: 225-232. https://doi.org/10.1065/espr2006.06.311. DOI: https://doi.org/10.1065/espr2006.06.311

IMARC Group. S. f. Nano copper oxide market size, share, growth, forecast 2023-2028. https://www.imarcgroup.com/nano-copper-oxide-market. (Consultado, 20 de abril, 2025).

Irshad, M. A., R. Nawaz, M. Z. U. Rehman, M. Imran, J. Ahmad, S. Ahmad, A. Inam, A. Razzaq, M. Rizwan y S. Ali. (2020). Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere, 258: 127352. https://doi.org/10.1016/j.chemosphere.2020.127352. DOI: https://doi.org/10.1016/j.chemosphere.2020.127352

Jassal, P. S., D. Kaur, R. Prasad y J. Singh. (2022). Green synthesis of titanium dioxide nanoparticles: development and applications. Journal of Agriculture and Food Research, 10: 100361. https://doi.org/10.1016/j.jafr.2022.100361. DOI: https://doi.org/10.1016/j.jafr.2022.100361

Jovanović, B. y Guzmán, H. M. (2014). Effects of titanium dioxide (TiO₂) nanoparticles on caribbean reef-building coral (Montastraea faveolata). Environmental Toxicology and Chemistry, 33(6), 1346-1353. https://doi.org/10.1002/etc.2560. DOI: https://doi.org/10.1002/etc.2560

Kerin, H., K. Nagaraj y S. Kamalesu. (2023). Review on aquatic toxicity of metal oxide nanoparticles. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.183. DOI: https://doi.org/10.1016/j.matpr.2023.02.183

Kim, T. Y., R. De, I. Choi, H. Kim y S. K. Hahn. (2024). Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials, 310: 122630. https://doi.org/10.1016/j.biomaterials.2024.122630. DOI: https://doi.org/10.1016/j.biomaterials.2024.122630

Labille, J., D. Slomberg, R. Catalano, S. Robert, M. L. Apers-Tremelo, J. L. Boudenne y O. Radakovitch. (2020). Assessing UV filter inputs into beach waters during recreational activity: a field study of three french Mediterranean beaches from consumer survey to water analysis. Science of the Total Environment, 706: 136010. https://doi.org/10.1016/j.scitotenv.2019.136010. DOI: https://doi.org/10.1016/j.scitotenv.2019.136010

Li, F., R. Li, F. Lu, L. Xu, L. Gan, W. Chu, M. Yan y H. Gong. (2023a). Adverse effects of silver nanoparticles on aquatic plants and zooplankton: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.139459. DOI: https://doi.org/10.1016/j.chemosphere.2023.139459

Li, G., X. Liu, H. Wang, S. Liang, B. Xia, K. Sun, X. Li, Y. Dai, T. Yue, J. Zhao, Z. Wang y B. Xing. (2023b). Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. Water Research, 242: 120242. https://doi.org/10.1016/j.watres.2023.120242. DOI: https://doi.org/10.1016/j.watres.2023.120242

Luo, W. y A. Taleb. (2021). Large-scale synthesis route of TiO₂ nanomaterials with controlled morphologies using hydrothermal method and TiO₂ aggregates as precursor. Nanomaterials, 11(2): 365. https://doi.org/10.3390/nano11020365. DOI: https://doi.org/10.3390/nano11020365

Malhotra, N., T.-R. Ger, B. Uapipatanakul, J.-C. Huang, K. H.-C. Chen, y C.-D. Hsiao. (2020). Review of copper and copper nanoparticle toxicity in fish. Nanomaterials, 10(6): 1126. https://doi.org/10.3390/nano10061126. DOI: https://doi.org/10.3390/nano10061126

Melegari, S. P., C. F. Fuzinatto, R. A. Gonçalves, B. V. Oscar, D. S. Vicentini, y W. G. Matias. (2019). Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials? Chemosphere, 224: 237-46. https://doi.org/10.1016/j.chemosphere.2019.02.093. DOI: https://doi.org/10.1016/j.chemosphere.2019.02.093

Miller, R. J., A. S. Adeleye, H. M. Page, L. Kui, H. S. Lenihan y A. A. Keller. (2020). Nano and traditional copper and zinc antifouling coatings: metal release and impact on marine sessile invertebrate communities. Journal of Nanoparticle Research, 22: 1-15. https://doi.org/10.1007/s11051-020-04875-x. DOI: https://doi.org/10.1007/s11051-020-04875-x

Morad, M., T. F. Hassanein, M. F. El-Khadragy, A. Fehaid, O. A. Habotta, y A. Abdel Moneim. (2023). Biochemical and histopathological effects of copper oxide nanoparticles exposure on the bivalve Chambardia rubens (Lamarck, 1819). Bioscience Reports, 43(5): BSR20222308. https://doi.org/10.1042/bsr20222308. DOI: https://doi.org/10.1042/BSR20222308

Motta, A. G. C., D. F. do Amaral, M. Benvindo-Souza, T. L. Rocha y D. D. M. e Silva. (2020). Genotoxic and mutagenic effects of zinc oxide nanoparticles and zinc chloride on tadpoles of Lithobates catesbeianus (Anura: Ranidae). Environmental Nanotechnology, Monitoring & Management, 14. https://doi.org/10.1016/j.enmm.2020.100356. DOI: https://doi.org/10.1016/j.enmm.2020.100356

Murthy, M. K., C. S. Mohanty, P. Swain, y R. Pattanayak. (2022). Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: a multi-biomarker approach. Chemosphere, 293: 133511. https://doi.org/10.1016/j.chemosphere.2021.133511. DOI: https://doi.org/10.1016/j.chemosphere.2021.133511

Murugesan, S., S. Balasubramanian, y E. Perumal. (2025). Copper oxide nanoparticles induced reactive oxygen species generation: a systematic review and meta-analysis. Chemico-Biological Interactions. Elsevier Ireland Ltd. https://doi.org/10.1016/j.cbi.2024.111311. DOI: https://doi.org/10.1016/j.cbi.2024.111311

Musa, I. O. et al. (2024). Introduction to nanotoxicology. En P. O. Isibor, G. Devi y A. A. Enuneku (eds.), Environmental nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-54154-4_1. DOI: https://doi.org/10.1007/978-3-031-54154-4_1

Naz, S., A. Gul, y M. Zia. (2020). Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnology, 14 (1): 1-13. https://doi.org/10.1049/iet-nbt.2019.0176. DOI: https://doi.org/10.1049/iet-nbt.2019.0176

Negrescu, A. M., M. S. Killian, S. N. V. Raghu, P. Schmuki, A. Mazare y A. Cimpean. (2022). Metal oxide nanoparticles: review of synthesis, characterization and biological effects. Journal of Functional Biomaterials, 13(4): 274. https://doi.org/10.3390/jfb13040274. DOI: https://doi.org/10.3390/jfb13040274

Noor, M. N., F. Wu, E. P. Sokolov, H. Falfushynska, S. Timm, F. Haider y I. M. Sokolova. (2021). Salinity-dependent effects of ZnO nanoparticles on bioenergetics and intermediate metabolite homeostasis in a euryhaline marine bivalve, Mytilus edulis. Science of the Total Environment, 774: 145195. DOI: https://doi.org/10.1016/j.scitotenv.2021.145195

Ortiz-Gálvez, L. M., A. Caballero-Guzmán, C. Lopes y E. Alfaro-Moreno. (2024). Probabilistic material flow analysis of released nano titanium dioxide in Mexico. NanoImpact, 35: 100516. https://doi.org/10.1016/j.impact.2024.100516. DOI: https://doi.org/10.1016/j.impact.2024.100516

Rahmani, R., B. Mansouri, N. A. Azadi, B. Davari, S. A. Johari, A. Maleki y M. A. Pordel. (2016). Histopathological alterations in the gill of zebrafish (Danio rerio) exposed to Cr and Ba doped TiO₂ nanoparticles. Aquaculture, Aquarium, Conservation & Legislation, 9(4): 889-900.

Raj, A. L. F. A., A. Annushrie y S. Karthick Raja Namasivayam. (2025). Anti-bacterial efficacy of photocatalytic active titanium dioxide (TiO₂) nanoparticles synthesized via green science principles against food spoilage pathogenic bacteria. The Microbe, 7: 100331. https://doi.org/10.1016/j.microb.2025.100331. DOI: https://doi.org/10.1016/j.microb.2025.100331

Rajput, V., T. Minkina, B. Ahmed, S. Sushkova, R. Singh, M. Soldatov et al. ( 2020). Interaction of copper-based nanoparticles to soil, terrestrial y aquatic systems: critical review of the state of the science and future perspectives. Reviews of Environmental Contamination and Toxicology, 252: 51-96. https://doi.org/10.1007/398_2019_34. DOI: https://doi.org/10.1007/398_2019_34

Rakib, M. R. J., A. Sarker, K. Ram, M. G. Uddin, T. R. Walker, T. Chowdhury, J. Uddin, M. U. Khandaker, M. M. Rahman y A. M. Idris. (2023). Microplastic toxicity in aquatic organisms and aquatic ecosystems: a review. Water, Air, and Soil Pollution, 234(1): 52. https://doi.org/10.1007/s11270-023-06062-9. DOI: https://doi.org/10.1007/s11270-023-06062-9

Rhazouani, A., H. Gamrani, M. El Achaby, K. Aziz, L. Gebrati, M. S. Uddin y F. Aziz. (2021). Synthesis and toxicity of graphene oxide nanoparticles: a literature review of in vitro and in vivo studies. BioMed Research International, 2021: 1-15. https://doi.org/10.1155/2021/5518999. DOI: https://doi.org/10.1155/2021/5518999

Rocco, L., M. Santonastaso, F. Mottola, D. Costagliola, T. Suero, S. Pacifico y V. Stingo. (2015). Genotoxicity assessment of TiO₂ nanoparticles in the teleost Danio rerio. Ecotoxicology and Environmental Safety, 113: 223-230. https://doi.org/10.1016/j.ecoenv.2014.12.012. DOI: https://doi.org/10.1016/j.ecoenv.2014.12.012

Sajid, M., M. Ilyas, C. Basheer, M. Tariq, M. Daud, N. Baig y F. Shehzad. (2015). Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research, 22: 4122-43. https://doi.org/10.1007/s11356-014-3994-1. DOI: https://doi.org/10.1007/s11356-014-3994-1

Santás-Miguel, V., M. Arias-Estévez, A. Rodríguez-Seijo y D. Arenas-Lago. (2023). Use of metal nanoparticles in agriculture: a review on the effects on plant germination. Environmental Pollution, 334: 122222. https://doi.org/10.1016/j.envpol.2023.122222. DOI: https://doi.org/10.1016/j.envpol.2023.122222

Sarkar, N., S. Chaudhary y M. Kaushik. (2021). Nano-fertilizers and nano-pesticides as promoters of plant growth in agriculture. En Plant-microbes-engineered nanoparticles (PM-ENPs) nexus in agro-ecosystems: understanding the interaction of plant, microbes and engineered nanoparticles (ENPS), 153-163. Springer. https://doi.org/10.1007/978-3-030-66956-0_10. DOI: https://doi.org/10.1007/978-3-030-66956-0_10

Shaw, B. J., y R. D. Handy. (2006). Dietary copper exposure and recovery in nile tilapia, Oreochromis niloticus. Aquatic Toxicology, 76(2): 111-21. https://doi.org/10.1016/j.aquatox.2005.10.002. DOI: https://doi.org/10.1016/j.aquatox.2005.10.002

Shi, Q., C. L. Wang, H. Zhang, C. Chen, X. Zhang y X. L. Chang. (2020). Trophic transfer and biomagnification of fullerenol nanoparticles in an aquatic food chain. Environmental Science: Nano, 7(4): 1240-1251. https://doi.org/10.1039/c9en01277j. DOI: https://doi.org/10.1039/C9EN01277J

Singh, D. y B. R. Gurjar. (2022). Nanotechnology for agricultural applications: facts, issues, knowledge gaps, and challenges in environmental risk assessment. Journal of Environmental Management, 322: 116033. https://doi.org/10.1016/j.jenvman.2022.116033. DOI: https://doi.org/10.1016/j.jenvman.2022.116033

Slomberg, D. L., Ollivier, P., Miche, H., Angeletti, B., Bruchet, A., Philibert, M., Brant, J. y Labille, J. (2019). Nanoparticle stability in lake water shaped by natural organic matter properties and presence of particulate matter. Science of The Total Environment, 656: 338-346. https://doi.org/10.1016/j.scitotenv.2018.11.279. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.279

Souza, I. da C., V. A. S. Mendes, I. D. Duarte, L. D. Rocha, V. C. Azevedo, S. T. Matsumoto, M. Elliott, D. A. Wunderlin, M. V. Monferrán y M. N. Fernandes. (2019). Nanoparticle transport and sequestration: intracellular titanium dioxide nanoparticles in a neotropical fish. Science of the Total Environment, 658: 798-808. https://doi.org/10.1016/j.scitotenv.2018.12.142. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.142

Starnes, D., J. Unrine, C. Chen, S. Lichtenberg, C. Starnes, C. Svendsen y O. Tsyusko. (2019). Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles. Environmental Pollution, 247: 917-926. https://doi.org/10.1016/j.envpol.2019.01.077. DOI: https://doi.org/10.1016/j.envpol.2019.01.077

Studer, A. M., L. K. Limbach, L. Van Duc, F. Krumeich, E. K. Athanassiou, L. C. Gerber et al. (2010). Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology Letters, 197(3): 169-74. https://doi.org/10.1016/j.toxlet.2010.05.012. DOI: https://doi.org/10.1016/j.toxlet.2010.05.012

Tan, W., J. R. Peralta-Videa y J. L. Gardea-Torresdey. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs — A critical review. Environmental Science: Nano, 5(2): 257-278. https://doi.org/10.1039/C7EN00985B. DOI: https://doi.org/10.1039/C7EN00985B

Tombak, A., M. Benhaliliba, Y. S. Ocak y T. Kiliçoglu. (2015). The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results in Physics, 5: 314-21. https://doi.org/10.1016/j.rinp.2015.11.001. DOI: https://doi.org/10.1016/j.rinp.2015.11.001

Tran, T.-K., M.-K. Nguyen, C. Lin, T.-D. Hoang, T.-C. Nguyen, A. M. Lone, A. P. Khedulkar, M. S. Gaballah, J. Singh, W. J. Chung y D. D. Nguyen. (2024). Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: emerging challenges in the modern age and solutions toward a sustainable environment. Science of the Total Environment, 912: 169331. https://doi.org/10.1016/j.scitotenv.2023.169331. DOI: https://doi.org/10.1016/j.scitotenv.2023.169331

Uddin, M. N., F. Desai y E. Asmatulu. (2021). Review of bioaccumulation, biomagnification, and biotransformation of engineered nanomaterials. Nanotoxicology and Nanoecotoxicology, 2: 133-164. Springer International Publishing. https://doi.org/10.1007/978-3-030-69492-0_6. DOI: https://doi.org/10.1007/978-3-030-69492-0_6

Velu Manikandan, V. y S. C. Min. (2023). Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: a review. International Journal of Biological Macromolecules, 252: 126381. https://doi.org/10.1016/j.ijbiomac.2023.126381. DOI: https://doi.org/10.1016/j.ijbiomac.2023.126381

Walke, G., S. S. Gaurkar, R. Prasad, T. Lohakare y M. Wanjari. (2023). The impact of oxidative stress on male reproductive function: exploring the role of antioxidant supplementation. Cureus, 15 (7). https://doi.org/10.7759/cureus.42583. DOI: https://doi.org/10.7759/cureus.42583

Wu, F., B. J. Harper y S. L. Harper. (2019). Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environmental Toxicology and Chemistry, 38(3): 591-602. https://doi.org/10.1002/etc.4349. DOI: https://doi.org/10.1002/etc.4349

Wu, F., E. P. Sokolov, A. Khomich, C. Fettkenhauer, G. Schnell, H. Seitz y I. M. Sokolova. (2022). Interactive effects of ZnO nanoparticles and temperature on molecular and cellular stress responses of the blue mussel Mytilus edulis. Science of the Total Environment, 818: 151785. https://doi.org/10.1016/j.scitotenv.2021.151785. DOI: https://doi.org/10.1016/j.scitotenv.2021.151785

Xiang, L., J. Fang y H. Cheng. (2018). Toxicity of silver nanoparticles to green algae M. aeruginosa and alleviation by organic matter. Environmental Monitoring and Assessment, 190: 1-9. https://doi.org/10.1007/s10661-018-7022-7. DOI: https://doi.org/10.1007/s10661-018-7022-7

Xu, L., M. Xu, R. Wang, Y. Yin, I. Lynch y S. Liu. (2020). The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small, 16(36): 2003691. https://doi.org/10.1002/smll.202003691. DOI: https://doi.org/10.1002/smll.202003691

Yang, S., M. Li, R. Y. C. Kong, L. Li, R. Li, J. Chen y K. P. Lai. (2023). Reproductive toxicity of micro- and nanoplastics. Environment International, 177: 108002. https://doi.org/10.1016/j.envint.2023.108002. DOI: https://doi.org/10.1016/j.envint.2023.108002

Yu, F., J. Gao, P. Zhang, S. Tang, H. Liu y W. Li. (2025). Distribution, environmental behavior, and ecotoxicity of different metal oxide nanoparticles in the aquatic environment. Process Safety and Environmental Protection, 196: 106856. https://doi.org/10.1016/j.psep.2025.106856. DOI: https://doi.org/10.1016/j.psep.2025.106856

Zhang, C., M. Jansen, L. De Meester y R. Stoks. (2019). Rapid evolution in response to warming does not affect the toxicity of a pollutant: insights from experimental evolution in heated mesocosms. Evolutionary Applications, 12(5): 977-88. https://doi.org/10.1111/eva.12772. DOI: https://doi.org/10.1111/eva.12772

Zhou, S., H. Li, H. Wang, R. Wang, W. Song, D. Li, C. Wei, Y. Guo, X. He y Y. Deng. (2023). Nickel nanoparticles induced hepatotoxicity in mice via lipid-metabolism-dysfunction-regulated inflammatory injury. Molecules, 28(15): 5757. https://doi.org/10.3390/molecules28155757. DOI: https://doi.org/10.3390/molecules28155757