El papel de las plantas y sus hongos micorrízicos ante la contaminación por nanomateriales en suelo

Contenido principal del artículo

Blanca Edith Millán-Chiu
https://orcid.org/0000-0001-5198-639X

Resumen

La creciente producción y liberación de nanomateriales al ambiente ha despertado preocupación por su toxicidad potencial en sistemas terrestres, especialmente en agroecosistemas. Las plantas son la base del equilibrio ecológico y de las cadenas tróficas, y normalmente están adaptadas para desarrollarse en condiciones de estrés abiótico. No obstante, los nanomateriales de origen antropogénico pueden generar una carga adicional de tensión y alterar su fisiología, inducir respuestas oxidativas, interferir con la homeostasis iónica, dañar macromoléculas e inhibir el crecimiento vegetal. Las asociaciones micorrízicas han demostrado desempeñar un papel protector mediante mecanismos como la inmovilización de nanomateriales en las hifas, la modulación del tránsito iónico, la inducción de antioxidantes enzimáticos y no enzimáticos, así como la estimulación en la generación de osmoprotectores. Estas asociaciones contribuyen a reducir la toxicidad e incrementar la resiliencia vegetal. Sin embargo, la eficacia de estas simbiosis está condicionada por múltiples factores, como la concentración y el tipo de nanomateriales, la especie vegetal y fúngica involucradas, así como las condiciones edáficas. Este trabajo ofrece una revisión de avances en el conocimiento de la interacción entre plantas, hongos micorrízicos y nanocontaminantes del suelo, destacando los mecanismos biológicos implicados en la mitigación del daño y las perspectivas para su aprovechamiento. 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Millán-Chiu, B. E. (2025). El papel de las plantas y sus hongos micorrízicos ante la contaminación por nanomateriales en suelo. Mundo Nano. Revista Interdisciplinaria En Nanociencias Y Nanotecnología, 19(36), e69889. https://doi.org/10.22201/ceiich.24485691e.2026.36.69889
Sección
Artículos de revisión

Citas

Aloufi, Fahed A. y Riyadh F. Halawani. (2025). Differential AMF-mediated biochemical responses in sorghum and oat plants under environmental impacts of neodymium nanoparticles. Plant Physiology and Biochemistry, 219: 109348. https://doi.org/10.1016/j.plaphy.2024.109348. DOI: https://doi.org/10.1016/j.plaphy.2024.109348

Alsherif, Emad A., Omar Almaghrabi, Ahmed M. Elazzazy, Mohamed Abdel-Mawgoud, Gerrit T. S. Beemster and Hamada AbdElgawad. (2023). Carbon nanoparticles improve the effect of compost and arbuscular mycorrhizal fungi in drought-stressed corn cultivation. Plant Physiology and Biochemistry, 194: 29-40. https://doi.org/10.1016/j.plaphy.2022.11.005. DOI: https://doi.org/10.1016/j.plaphy.2022.11.005

Apodaca, Suzanne A., Keni Cota-Ruiz, José A. Hernández-Viezcas y Jorge L. Gardea-Torresdey. (2022). Arbuscular mycorrhizal fungi alleviate phytotoxic effects of copper-based nanoparticles/compounds in spearmint (Mentha spicata). ACS Agricultural Science & Technology, 2(3): 661-70. https://doi.org/10.1021/acsagscitech.2c00079. DOI: https://doi.org/10.1021/acsagscitech.2c00079

Ban, Yihui, Zong Xiao, Chen Wu, Yichao Lv, Fake Meng, Jinyi Wang y Zhouying Xu. (2021). The positive effects of inoculation using arbuscular mycorrhizal fungi and/or dark septate endophytes on the purification efficiency of CuO-nanoparticles-polluted wastewater in constructed wetland. Journal of Hazardous Materials, 416: 126095. https://doi.org/10.1016/j.jhazmat.2021.126095. DOI: https://doi.org/10.1016/j.jhazmat.2021.126095

Bánki, O., Y. Roskov, M. Döring, G. Ower, D. R. Hernández Robles, C. A. Plata Corredor, T. Stjernegaard Jeppesen, A. Örn, T. Pape, D. Hobern, S. Garnett, H. Little, R. E. DeWalt, K. Ma, J. Miller, T. Orrell, R. Aalbu, J. Abbott, R. Adlard et al. (2025). Catalogue of Life (Taxon P). Amsterdam: Catalogue of Life. https://doi.org/10.48580/dgplc.

Berhin, Alice, Damien De Bellis, Rochus B. Franke, Rafael A. Buono, Moritz K. Nowack y Christiane Nawrath. (2019). The root cap cuticle: a cell wall structure for seedling establishment and lateral root formation. Cell, 176(6): 1367-78.e.8. https://doi.org/10.1016/j.cell.2019.01.005. DOI: https://doi.org/10.1016/j.cell.2019.01.005

Brian, W. (2022). Differences between monocot stem and dicot stem. Journal of Plant Biochemistry and Physiology, 8: 290. https://www.longdom.org/open-access/differences-between-monocot-stem-and-dicot-stem-89813.html.

Chen, Hanwen, Xin Zhang, Haixi Wang, Shuping Xing, Rongbin Yin, Wei Fu, Matthias C. Rillig, Baodong Chen y Yongguan Zhu. (2023). Arbuscular mycorrhizal fungi can inhibit the allocation of microplastics from crop roots to aboveground edible parts. Journal of Agricultural and Food Chemistry, 71(47): 18323-32. https://doi.org/10.1021/acs.jafc.3c05570. DOI: https://doi.org/10.1021/acs.jafc.3c05570

Duo, Lian, Hang Su, Jiayi Li, Qi Wang and Shulan Zhao. (2024). Impact of graphene oxide disturbance on the structure and function of arbuscular mycorrhizal networks. Ecotoxicology and Environmental Safety, 288: 117412. https://doi.org/10.1016/j.ecoenv.2024.117412. DOI: https://doi.org/10.1016/j.ecoenv.2024.117412

Dwivedi, Amarendra Dhar, Shashi Prabha Dubey, Mika Sillanpää, Young-Nam Kwon, Changha Lee y Rajender S. Varma. (2015). Fate of engineered nanoparticles: implications in the environment. Coordination Chemistry Reviews, 287: 64-78. https://doi.org/10.1016/j.ccr.2014.12.014. DOI: https://doi.org/10.1016/j.ccr.2014.12.014

European Union Commission. (2011). Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Official Journal of the European Union. http://data.europa.eu/eli/reco/2011/696/oj.

Gatasheh, Mansour K., Anis Ali Shah, Muhammad Kaleem, Sheeraz Usman y Shifa Shaffique. (2024). Application of CuNPs and AMF alleviates arsenic stress by encompassing reduced arsenic uptake through metabolomics and ionomics alterations in Elymus sibiricus. BMC Plant Biology, 24(1): 667. https://doi.org/10.1186/s12870-024-05359-z. DOI: https://doi.org/10.1186/s12870-024-05359-z

Ghaffari, Zahra Yaichi, Mohammad Bagher Hassanpouraghdam, Farzad Rasouli, Mohammad Ali Aazami, Lamia Vojodi Mehrabani, Samaneh Fathpour Jabbari, Mohammad Asadi, Ezatollah Esfandiari and Silvia Jimenez-Becker. (2025). Zinc oxide nanoparticles foliar use and arbuscular mycorrhiza inoculation retrieved salinity tolerance in Dracocephalum moldavica L. by modulating growth responses and essential oil constituents. Scientific Reports, 5(1): 492. https://doi.org/10.1038/s41598-024-84198-2. DOI: https://doi.org/10.1038/s41598-024-84198-2

Giambalvo, Dario, Gaetano Amato, Rosolino Ingraffia, Antonella Lo Porto, Giulia Mirabile, Paolo Ruisi, Livio Torta and Alfonso S. Frenda. (2023). Nitrogen fertilization and arbuscular mycorrhizal fungi do not mitigate the adverse effects of soil contamination with polypropylene microfibers on maize growth. Environmental Pollution, 334: 122146. https://doi.org/10.1016/j.envpol.2023.122146. DOI: https://doi.org/10.1016/j.envpol.2023.122146

González, Favio. (1999). Monocotiledóneas y dicotiledóneas: un sistema de clasificación que acaba con el siglo. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(87): 195-204. https://doi.org/10.18257/raccefyn.23(87).1999.2890. DOI: https://doi.org/10.18257/raccefyn.23(87).1999.2890

Gorczyca, Anna, Sebastian Wojciech Przemieniecki y Magdalena Oćwieja. (2024). Comparative effect of silver nanoparticles on maize rhizoplane microbiome in initial phase of plants growth. International Agrophysics, 38(2): 155-64. https://doi.org/10.31545/intagr/184863. DOI: https://doi.org/10.31545/intagr/184863

Goswami, Linee, Ki-Hyun Kim, Akash Deep, Pallabi Das, Satya Sundar Bhattacharya, Sandeep Kumar and Adedeji A. Adelodun. (2017). Engineered nanoparticles: nature, behavior, and effect on the environment. Journal of Environmental Management, 196: 297-315. https://doi.org/10.1016/j.jenvman.2017.01.011. DOI: https://doi.org/10.1016/j.jenvman.2017.01.011

Hawksworth, David L. y Robert Lücking. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5(4). https://doi.org/10.1128/microbiolspec.funk-0052-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

International Organization for Standardization. (2015). Nanotechnologies – Vocabulary – Part 1: Core Terms. ISO/TS 80004-1:2015. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en.

Jampílek, Josef y Katarína Kráľová. (2015). Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering S, 22(3): 321-61. https://doi.org/10.1515/eces-2015-0018. DOI: https://doi.org/10.1515/eces-2015-0018

Kaplan, Donald R. (2001). The science of plant morphology: definition, history, and role in modern biology. American Journal of Botany, 88: 1711-41. https://doi.org/10.2307/3558347. DOI: https://doi.org/10.2307/3558347

Koivisto, Antti Joonas, Alexander Christian Østerskov Jensen, Kirsten Inga Kling, Asger Nørgaard, Anna Brinch, Frans Christensen y Keld Alstrup Jensen. (2017). Quantitative material releases from products and articles containing manufactured nanomaterials: towards a release library. NanoImpact, 5: 119-32. https://doi.org/10.1016/j.impact.2017.02.001. DOI: https://doi.org/10.1016/j.impact.2017.02.001

Lala, Sanchaita. 2021. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: a review. IET Nanobiotechnology, 15(1): 28-57. https://doi.org/10.1049/nbt2.12005. DOI: https://doi.org/10.1049/nbt2.12005

Larue, Camille, Julien Laurette, Nathalie Herlin-Boime, Hicham Khodja, Barbara Fayard, Anne-Marie Flank, François Brisset y Marie Carriere. (2012). Accumulation, translocation and impact of TiO₂ nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. The Science of the Total Environment, 431: 197-208. https://doi.org/10.1016/j.scitotenv.2012.04.073. DOI: https://doi.org/10.1016/j.scitotenv.2012.04.073

Li, Xinru, Feng Shi, Min Zhou, Fengchang Wu, Hailei Su, Xuesong Liu, Yuan Wei and Fanfan Wang. (2024). Migration and accumulation of microplastics in soil-plant systems mediated by symbiotic microorganisms and their ecological effects. Environment International, 191: 108965. https://doi.org/10.1016/j.envint.2024.108965. DOI: https://doi.org/10.1016/j.envint.2024.108965

Luginbuehl, Leonie H. y Giles E. D. Oldroyd. (2017). Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Current Biology, 27(17): R952-63. https://doi.org/10.1016/j.cub.2017.06.042. DOI: https://doi.org/10.1016/j.cub.2017.06.042

Martin, Francis, Anders Kohler, Christophe Murat, Claude Veneault-Fourrey y David S. Hibbett. (2016). Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology, 14(12): 760-73. https://doi.org/10.1038/nrmicro.2016.149. DOI: https://doi.org/10.1038/nrmicro.2016.149

Mbodj, D., B. Effa-Effa, A. Kane, B. Manneh, P. Gantet, L. Laplaze, A. Diedhiou y A. Grondin. (2018). Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere, 8: 12-26. https://doi.org/10.1016/j.rhisph.2018.08.003. DOI: https://doi.org/10.1016/j.rhisph.2018.08.003

Millán-Chiu, Blanca E., María del Pilar Rodríguez-Torres y Achim M. Loske. (2020). Nanotoxicology in plants. En J. Patra, L. Fraceto, G. Das y E. Campos (eds.), Green nanoparticles. Nanotechnology in the life sciences. Cham, Suiza: Springer. https://doi.org/10.1007/978-3-030-39246-8_3. DOI: https://doi.org/10.1007/978-3-030-39246-8_3

Mishra, Vani, Rohit K. Mishra, Anupam Dikshit y Avinash C. Pandey. (2014). Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. En P. Ahmad (ed.), Emerging technologies and management of crop stress tolerance, vol. 1. Elsevier eBooks. 159-84. https://doi.org/10.1016/B978-0-12-800876-8.00008-4. DOI: https://doi.org/10.1016/B978-0-12-800876-8.00008-4

Mittler, Ron. (2017). ROS are good. Trends in Plant Science, 22: 11-19. https://doi.org/10.1016/j.tplants.2016.08.002. DOI: https://doi.org/10.1016/j.tplants.2016.08.002

Money, Nicholas P. (2016). Fungal cell biology and development. En S. C. Watkinson, L. Boddy y N. P. Money (eds.), The fungi. 3a ed. Boston: Academic Press, 37-66. https://doi.org/10.1016/B978-0-12-382034-1.00002-5. DOI: https://doi.org/10.1016/B978-0-12-382034-1.00002-5

Noctor, Graham, Jean-Philippe Reichheld y Christine H. Foyer. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80: 3-12. https://doi.org/10.1016/j.semcdb.2017.07.013. DOI: https://doi.org/10.1016/j.semcdb.2017.07.013

Noori, Azam, Jason C. White y Lee A. Newman. (2017). Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. Journal of Nanoparticle Research, 19(2): 66. https://doi.org/10.1007/s11051-016-3650-4. DOI: https://doi.org/10.1007/s11051-016-3650-4

Prakash, D. V. Surya, Istuti Gupta, Maheswara Reddy Mallu y T. Mohammad Munawar. (2023). Soil pollution by micro- and nanoplastics: sources, fate, and impact. En N. R. Maddela, K. V. Reddy y P. Ranjit (eds.), Micro and nanoplastics in soil: threats to plant-based food. Cham, Switzerland: Springer ebooks International Publishing, 11-34. https://doi.org/10.1007/978-3-031-21195-9_2. DOI: https://doi.org/10.1007/978-3-031-21195-9_2

Qian, Haifeng, Xiaofeng Peng, Xiao Han, Jie Ren, Liwei Sun and Zhengwei Fu. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model arabidopsis thaliana. Journal of Environmental Sciences, 25(9): 1947-56. https://doi.org/10.1016/S1001-0742(12)60301-5. DOI: https://doi.org/10.1016/S1001-0742(12)60301-5

Rico, Cyren M., Sanghamitra Majumdar, María Duarte-Gardea, José R. Peralta-Videa y Jorge L. Gardea-Torresdey. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8): 3485-98. https://doi.org/10.1021/jf104517j. DOI: https://doi.org/10.1021/jf104517j

Rizwan, Muhammad, Shafaqat Ali, Muhammad Zia Ur Rehman, Muhammad Adrees, Muhammad Arshad, Muhammad Farooq Qayyum, Liaqat Ali, Afzal Hussain, Shahzad Ali Shahid Chatha y Muhammad Imran. (2019). Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 248: 358-67. https://doi.org/10.1016/j.envpol.2019.02.031. DOI: https://doi.org/10.1016/j.envpol.2019.02.031

Roberts, Alison W., Eric M. Roberts y Candace H. Haigler. (2012). Moss cell walls: structure and biosynthesis. Frontiers in Plant Science, 3: 166. https://doi.org/10.3389/fpls.2012.00166. DOI: https://doi.org/10.3389/fpls.2012.00166

Russo, Mariateresa, Mariateresa Oliva, M. Iftikhar Hussain y Adele Muscolo. (2023). The hidden impacts of micro/nanoplastics on soil, crop and human health. Journal of Agriculture and Food Research, 14: 100870. https://doi.org/10.1016/j.jafr.2023.100870. DOI: https://doi.org/10.1016/j.jafr.2023.100870

Shah, Anis Ali, Sheeraz Usman, Zahra Noreen, Muhammad Kaleem, Vaseem Raja, Mohamed A. El-Sheikh, Zakir Ibrahim y Shafaque Sehar. (2024). Fullerenol nanoparticles and AMF application for optimization of Brassica napus L. resilience to lead toxicity through physio-biochemical and antioxidative modulations. Scientific Reports, 14(1): 30992. https://doi.org/10.1038/s41598-024-82086-3. DOI: https://doi.org/10.1038/s41598-024-82086-3

Sheffield, Liz y Jennifer Rowntree. (2009). Bryophyte biology. 2a ed. Annals of Botany. 104(1). Exeter, UK. https://doi.org/10.1093/aob/mcp109. DOI: https://doi.org/10.1093/aob/mcp109

Smith, Sally E. y David J. Read. (2008). Mycorrhizal symbiosis. 3a ed, Elsevier ebooks. Londres y Cambridge, MA: Academic Press, 525-72. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6. DOI: https://doi.org/10.1016/B978-012370526-6.50017-9

Sun, Dongnian, Junli Hu, Jianfeng Bai, Hua Qin, Junhua Wang, Jingwei Wang y Xiangui Lin. (2021). Arbuscular mycorrhizal fungus facilitates ryegrass (Lolium perenne L.) growth and polychlorinated biphenyls degradation in a soil applied with nanoscale zero-valent iron. Ecotoxicology and Environmental Safety, 215: 112170. https://doi.org/10.1016/j.ecoenv.2021.112170. DOI: https://doi.org/10.1016/j.ecoenv.2021.112170

Taylor, Thomas N., Winfried Remy, Hans Hass y Hans Kerp. (1995). Fossil arbuscular mycorrhizae from the early devonian. Mycologia, 87(4): 560-73. https://doi.org/10.1080/00275514.1995.12026569. DOI: https://doi.org/10.1080/00275514.1995.12026569

Villalpando-Rodríguez, Gloria E. y Spencer B. Gibson. (2021). Reactive oxygen species (ROS) regulate different types of cell death by acting as a rheostat. Oxidative Medicine and Cellular Longevity, 2021(1): 9912436. https://doi.org/10.1155/2021/9912436. DOI: https://doi.org/10.1155/2021/9912436

Wahab, Abdul, Murad Muhammad, Asma Munir, Gholamreza Abdi, Wajid Zaman, Asma Ayaz, Chandni Khizar y Sneha Priya Pappula Reddy. (2023). Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, 12(17): 3102. https://doi.org/10.3390/plants12173102. DOI: https://doi.org/10.3390/plants12173102

Wang, Quanlong, Peng Zhang, Weichen Zhao, Yuanbo Li, Yaqi Jiang, Yukui Rui, Zhiling Guo e Iseult Lynch. (2023). Interplay of metal-based nanoparticles with plant rhizosphere microenvironment: implications for nanosafety and nano-enabled sustainable agriculture. Environmental Science Nano, 10(2): 372-92. https://doi.org/10.1039/d2en00803c. DOI: https://doi.org/10.1039/D2EN00803C

Watts-Williams, Stephanie J., Terence W. Turney, Antonio F. Patti y Timothy R. Cavagnaro. (2014). Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant and Soil, 376: 165-75. https://doi.org/10.1007/s11104-013-1967-7. DOI: https://doi.org/10.1007/s11104-013-1967-7

Wei, Xieluyao, Xianrui Tian, Ke Zhao, Xiumei Yu, Qiang Chen, Lingzi Zhang, Decong Liao, Petri Penttinen y Yunfu Gu. (2024). Bacterial community in the buckwheat rhizosphere responds more sensitively to single microplastics in lead-contaminated soil compared to the arbuscular mycorrhizal fungi community. Ecotoxicology and Environmental Safety, 281: 116683. https://doi.org/10.1016/j.ecoenv.2024.116683. DOI: https://doi.org/10.1016/j.ecoenv.2024.116683

Yang, Dongguang, Li Wang, Fang Ma, Gen Wang y Yongqiang You. (2023). Effects of Ag nanoparticles on plant growth, Ag bioaccumulation, and antioxidant enzyme activities in Phragmites australis as influenced by an arbuscular mycorrhizal fungus. Environmental Science and Pollution Research International, 2: 4669-79. https://doi.org/10.1007/s11356-022-22540-9. DOI: https://doi.org/10.1007/s11356-022-22540-9

Zhang, Lan, Guorui Zhang, Ziyue Shi, Mengxuan He, Dan Ma y Jie Liu. (2024). Effects of polypropylene micro(nano)plastics on soil bacterial and fungal community assembly in saline-alkaline wetlands. Science of the Total Environment, 945: 173890. https://doi.org/10.1016/j.scitotenv.2024.173890. DOI: https://doi.org/10.1016/j.scitotenv.2024.173890

Zhu, Jian-Kang. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2): 313-24. https://doi.org/10.1016/j.cell.2016.08.029. DOI: https://doi.org/10.1016/j.cell.2016.08.029