Transesterification of canola oil with Sr/CaO using the Box-Behnken method
Main Article Content
Abstract
This work aimed to optimize the transesterification of canola oil to generate biodiesel with Sr/CaO catalysts obtained from eggshells by studying the effect of the amount of strontium, calcination temperature, and the Box-Behnken method. Sr/CaO catalysts with 3, 6, and 9 wt% Sr calcined at 500, 650, and 800 °C were prepared by wet impregnation using Sr(NO3)2 dissolved in methanol. As the amount of Sr and the calcination temperature of all series increases, so does the biodiesel yield. This is because more superficial active sites are generated with high Sr concentration and calcination temperature. Likewise, it was observed that SrCO3 species are formed, which would limit the catalyst performance. Based on the results, the catalyst with 9 wt% Sr calcined at 800 °C was the most active and used in the optimization. To achieve this, Box-Behnken method was used with the methanol/oil molar ratio, temperature, and time were used as factors using 8 wt% catalyst to oil. The optimum yield was 90.81 % at a methanol/oil molar ratio=10, 68.58 °C for 2 h.
Downloads
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Aleman-Ramirez, J. L., Patrick U. O., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J. y Sebastian J. P. (2022). Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel, 324: 124601. https://doi.org/10.1016/j.fuel.2022.124601. DOI: https://doi.org/10.1016/j.fuel.2022.124601
Ali, S. D., Javed, I. N., Ran,a U. A., Nazar, M. F., Ahmed, W., Junaid, A., Pasha, M., Nazir, R. y Nazir R. (2017). Novel SrO-CaO mixed metal oxides catalyst for ultrasonic-assisted transesterification of Jatropha oil into biodiesel. Australian Journal of Chemistry, 70(3): 258-64. https://doi.org/10.1071/CH16236. DOI: https://doi.org/10.1071/CH16236
Ashine F., Kiflie Z., Prabhu S. V., Tizazu B. Z., Varadharajan V., Rajasimman M., Joo S. W., Vasseghian Y. y Jayakumar M. (2023). Biodiesel production from Argemone mexicana oil using chicken eggshell derived CaO catalyst. Fuel, 332: 126166. https://doi.org/10.1016/j.fuel.2022.126166. DOI: https://doi.org/10.1016/j.fuel.2022.126166
Chouhan, A. P. S. y Sarma A. K. (2011). Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renewable and Sustainable Energy Reviews, 15(9): 4378-99. https://doi.org/10.1016/j.rser.2011.07.112. DOI: https://doi.org/10.1016/j.rser.2011.07.112
Culas, S., Surendran, A., Jadu Samuel, J. (2013). Kinetic studies of the non-isothermal decomposition of strontium nitrate. Asian Journal of Chemistry, 25(7): 3855. https://doi.org/10.14233/ajchem.2013.13820. DOI: https://doi.org/10.14233/ajchem.2013.13820
Dianursanti, Delaamira M., Bismo S. y Muharam Y. (2017). Effect of reaction temperature on biodiesel production from chlorella vulgaris using CuO/zeolite as heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science, 55(1): 12033. https://doi.org/10.1088/1755-1315/55/1/012033. DOI: https://doi.org/10.1088/1755-1315/55/1/012033
Glisic, S. B., Pajnik, J. M. y Orlović, A. M. (2016). Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Applied Energy, 170: 176-85. https://doi.org/10.1016/j.apenergy.2016.02.102. DOI: https://doi.org/10.1016/j.apenergy.2016.02.102
Hernández-Martínez, M. A., Rodriguez, J. A., Chavez-Esquivel, G., Ángeles-Beltrán, D. y Tavizón-Pozos, J. A. (2023). Canola oil transesterification for biodiesel production using potassium and strontium supported on calcium oxide catalysts synthesized from oyster shell residues. Next Materials, 1(4): 100033. https://doi.org/10.1016/j.nxmate.2023.100033. DOI: https://doi.org/10.1016/j.nxmate.2023.100033
Khan, M. R. y Singh, H. N. (2024). Clean biodiesel production approach using waste swan eggshell derived heterogeneous catalyst: an optimization study employing box-behnken-response surface methodology. Industrial Crops and Products, 220: 119181. https://doi.org/10.1016/j.indcrop.2024.119181. DOI: https://doi.org/10.1016/j.indcrop.2024.119181
Khatibi, M., Khorasheh, F. y Larimi, A. (2021). Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renewable Energy, 163: 1626-36. https://doi.org/10.1016/j.renene.2020.10.039. DOI: https://doi.org/10.1016/j.renene.2020.10.039
Kibar, M. E., Hilal, L., Çapa, B. T., Bahçıvanlar, B. y Abdeljelil, B. B. (2023). Assessment of homogeneous and heterogeneous catalysts in transesterification reaction: a mini review. ChemBioEng Reviews, 10(4): 412-22. https://doi.org/10.1002/cben.202200021. DOI: https://doi.org/10.1002/cben.202200021
Kouzu, M., Hidaka, J., Wakabayashi, K. y Tsunomori, M. (2010). Solid base catalysis of calcium glyceroxide for a reaction to convert vegetable oil into its methyl esters. Applied Catalysis A: General, 390(1): 11-18. https://doi.org/10.1016/j.apcata.2010.09.029. DOI: https://doi.org/10.1016/j.apcata.2010.09.029
Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S. y Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12): 2798-2806. https://doi.org/10.1016/j.fuel.2007.10.019. DOI: https://doi.org/10.1016/j.fuel.2007.10.019
Kumar, J. D., Bhattacharjee, S., Roy, S., Dostál, P. y Bej, B. (2022). The optimization of biodiesel production from waste cooking oil catalyzed by ostrich-eggshell derived CaO through various machine learning approaches. Cleaner Energy Systems, 3: 100033. https://doi.org/10.1016/j.cles.2022.100033. DOI: https://doi.org/10.1016/j.cles.2022.100033
Lee, S. B., Han, K. H., Lee, J. D. y Hong, I. K. (2010). Optimum process and energy density analysis of canola oil biodiesel synthesis. Journal of Industrial and Engineering Chemistry, 16(6): 1006-10. https://doi.org/10.1016/j.jiec.2010.09.015. DOI: https://doi.org/10.1016/j.jiec.2010.09.015
Li, H., Niu, S., Lu, C. y Li, J. (2016). Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel, 176: 63-71. https://doi.org/10.1016/j.fuel.2016.02.067. DOI: https://doi.org/10.1016/j.fuel.2016.02.067
Liu, X., He, H., Wang, Y., Zhu, S. y Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2): 216-21. https://doi.org/10.1016/j.fuel.2007.04.013. DOI: https://doi.org/10.1016/j.fuel.2007.04.013
Mat, A., Syahirah, N., Khoo, K. S., Chew, K. W., Show, P. L., Chen, W. H. y Nguyen, H.P. (2020). Sustainability of the four generations of biofuels – A review. International Journal of Energy Research, 44(12): 9266-82. https://doi.org/10.1002/er.5557. DOI: https://doi.org/10.1002/er.5557
Mofijur, M., Siddiki, S. Y. A., Shuvho, M. B. A., Djavanroodi, F., Rizwanul Fattah, I. M., Ong, H. C., Chowdhury, M. A. y Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources – A mini-review. Chemosphere – 270: 128642. https://doi.org/10.1016/j.chemosphere.2020.128642. DOI: https://doi.org/10.1016/j.chemosphere.2020.128642
Otera J. (1993). Transesterification. Chemical Reviews, 93(4): 1449-70. https://doi.org/10.1021/cr00020a004. DOI: https://doi.org/10.1021/cr00020a004
Olvera-Ureña, E., Rodriguez, J. A., Díaz de León, J. N. y Tavizón-Pozos, J. A. (2025). Dispersion of Sr and K species supported on CaO eggshell-based catalysts for biodiesel production. Topics in Catalysis, 1-14. https://doi.org/10.1007/s11244-025-02050-x. DOI: https://doi.org/10.1007/s11244-025-02050-x
Pavlović, S., Šelo, G., Marinković, D., Planinić, M., Tišma, M. y Stanković, M. (2021). Transesterification of sunflower oil over waste chicken eggshell-based catalyst in a microreactor: an optimization study. Micromachines. https://doi.org/10.3390/mi12020120. DOI: https://doi.org/10.3390/mi12020120
Prokaewa, A., Smith, S. M., Luengnaruemitchai, A., Kandiah, M. y Boonyuen, S. (2022). Biodiesel production from waste cooking oil using a new heterogeneous catalyst SrO doped CaO nanoparticles. Journal of Metals, Materials and Minerals, 32(1): 79-85. https://doi.org/10.55713/jmmm.v32i1.1149. DOI: https://doi.org/10.55713/jmmm.v32i1.1149
Ptáček, P., Bartoníčková, E., Švec, J., Opravil, T., Šoukal, F. y Frajkorová, F. (2015). The kinetics and mechanism of thermal decomposition of SrCO3 polymorphs. Ceramics International, 41(1, Part A): 115-26. https://doi.org/10.1016/j.ceramint.2014.08.043. DOI: https://doi.org/10.1016/j.ceramint.2014.08.043
Ramírez-Paredes, E. A., Rodriguez, J. A., Chavez-Esquivel, G. y Tavizón-Pozos, J. A. (2024). Effect of Sr concentration in SrK/CaO oyster shell derived catalysts for biodiesel production, International Journal of Chemical Reactor Engineering, 22(6): 689-700. https://doi.org/doi:10.1515/ijcre-2024-0021. DOI: https://doi.org/10.1515/ijcre-2024-0021
Rizwanul Fattah, I. M., Ong, H. C., Mahlia, T. M. I., Mofijur, M., Silitonga, A. S., Rahman, S. M. A. y Ahmad, A. (2020). State of the art of catalysts for biodiesel production. Frontiers in Energy Research, 8: 101. https://www.frontiersin.org/articles/10.3389/fenrg.2020.00101. DOI: https://doi.org/10.3389/fenrg.2020.00101
Solomon, B. D. (2010). Biofuels and sustainability. Annals of the New York Academy of Sciences, 1185(1): 119-34. https://doi.org/10.1111/j.1749-6632.2009.05279.x. DOI: https://doi.org/10.1111/j.1749-6632.2009.05279.x
Tangy, A., Pulidindi, I. N., Dutta, A. y Borenstein, A. (2021). Strontium oxide nanoparticles for biodiesel production: fundamental insights and recent progress. Energy & Fuels, 35(1): 187-200. https://doi.org/10.1021/acs.energyfuels.0c03815. DOI: https://doi.org/10.1021/acs.energyfuels.0c03815
Tavizón-Pozos, J. A. y Cruz-Aburto, Z. G. (2024). A review of the use of SrO in catalysts for biodiesel production. Biofuels, Bioproducts and Biorefining, 18(2): 652-68. https://doi.org/10.1002/bbb.2562. DOI: https://doi.org/10.1002/bbb.2562
Tavizón-Pozos, J. A., Chavez-Esquivel, G., Suárez-Toriello, V. A., Santolalla-Vargas, C. E., Luévano-Rivas, O. A., Valdés-Martínez, O. U., Talavera-López, A. y Rodriguez, J. A. (2021). State of art of alkaline earth metal oxides catalysts used in the transesterification of oils for biodiesel production. Energies. https://doi.org/10.3390/en14041031. DOI: https://doi.org/10.3390/en14041031
Unruean, P., Nomura, K., Kitiyanan, B., (2022). High conversion of CaO-catalyzed transesterification of vegetable oils with ethanol. Journal of Oleo Science, 17(7) 1051-1062. https://doi.org/10.5650/jos.ess21374. DOI: https://doi.org/10.5650/jos.ess21374
Verma, P. y Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62: 1063-71. https://doi.org/10.1016/j.rser.2016.04.054. DOI: https://doi.org/10.1016/j.rser.2016.04.054