Factors to consider in the design and synthesis of polymeric nanoparticles for targeted delivery of anticancer molecules Factors to consider in the design and synthesis of polymeric nanoparticles for targeted delivery of anticancer molecules

Main Article Content

Karla Oyuky Juárez Moreno
https://orcid.org/0000-0002-6171-8601
Jorge Herrera-Ordóñez
https://orcid.org/0000-0003-3509-4871

Abstract

For an anticancer molecule to effectively enter a tumor cell and perform its function, it must overcome the physical and physiological barriers that the human body imposes. These barriers must be carefully considered and translated into specific physicochemical characteristics that the molecule must possess to ensure successful delivery. One strategy to enhance drug delivery involves using nanomaterials as carriers to facilitate the targeted delivery of drugs and bioactive molecules. This work reviews key biological aspects relevant to the topic. It examines how to tune and modulate the physicochemical properties of nanomaterials to overcome these barriers. Specifically, it discusses how parameters such as particle size, chemical composition, and functionalization can be optimized to improve drug targeting to neoplastic cells. This work focuses on emulsion polymerization as a method for nanocarrier synthesis, emphasizing the control of the average and size distribution of the particle. Furthermore, it highlights a physical functionalization method developed by our research group, which has led to a patent innovation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Juárez Moreno, K. O., & Herrera-Ordóñez, J. (2025). Factors to consider in the design and synthesis of polymeric nanoparticles for targeted delivery of anticancer molecules: Factors to consider in the design and synthesis of polymeric nanoparticles for targeted delivery of anticancer molecules. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 18(35), e69848. https://doi.org/10.22201/ceiich.24485691e.2025.35.69848
Section
Review articles

References

Alexandre, Nuno, Jorge Ribeiro, Andrea Gärtner, Tiago Pereira, Irina Amorim, João Fragoso, Ascensão Lopes et al. 2014. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting - In vitro and in vivo studies. Journal of Biomedical Materials Research - Part A, 102(12): 4262-75. https://doi.org/10.1002/jbm.a.35098.

Angelopoulou, Athina, Argiris Kolokithas-Ntoukas, Christos Fytas y Konstantinos Avgoustakis. 2019. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega, 4(26): 22214-27. https://doi.org/10.1021/acsomega.9b03594.

Beach, Maximilian A., Umeka Nayanathara, Yanting Gao, Changhe Zhang, Yijun Xiong, Yufu Wang y Georgina K. Such. 2024. Polymeric nanoparticles for drug delivery. Chemical Reviews, 124(9): 5505-5616. https://doi.org/10.1021/acs.chemrev.3c00705.

Choi, Chung Hang J., Jonathan E. Zuckerman, Paul Webster y Mark E. Davis. 2011. Targeting kidney mesangium by nanoparticles of defined size. Proceedings of the National Academy of Sciences, 108(16): 6656-61. https://doi.org/10.1073/pnas.1103573108.

Coen, Emma M., Robert G. Gilbert, Bradley R. Morrison, Hartmann Leube y Sarah Peach. 1998. Modelling particle size distributions and secondary particle formation in emulsion polymerisation. Polymer, 39(26): 7099-7112. https://doi.org/10.1016/S0032-3861(98)00255-9.

Davis, Mark E. 2012. Fighting cancer with nanoparticle medicines. The nanoscale matters. MRS Bulletin, 37(9): 828-35. https://doi.org/10.1557/mrs.2012.202.

Dobrowolska, Marta E. y Ger J. M. Koper. 2014. Optimal ionic strength for nonionically initiated polymerization. Soft Matter, 10(8): 1151. https://doi.org/10.1039/c3sm51998h.

Dreher, Matthew R., Wenge Liu, Charles R. Michelich, Mark W. Dewhirst, Fan Yuan y Ashutosh Chilkoti. 2006. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Institute, 98(5): 335-44. https://doi.org/10.1093/jnci/djj070.

Gao, Huajian, Wendong Shi y Lambert B. Freund. 2005. Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences, 102(27): 9469-74. https://doi.org/10.1073/pnas.0503879102.

Garay-Jiménez, Julio C., Danielle Gergeres, Ashley Young, Daniel V. Lim y Edward Turos. 2009. Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4): 443-51. https://doi.org/10.1016/j.nano.2009.01.015.

Gilbert, Robert G. 1995. Emulsion polymerization: a mechanistic approach. Londres: Academic Press.

Harkins, William D. 1947. A general theory of the mechanism of emulsion polymerization. Journal of the American Chemical Society, 69(6): 1428-44. https://doi.org/10.1021/ja01198a053.

He, Chunbai, Yiping Hu, Lichen Yin, Cui Tang y Chunhua Yin. 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13): 3657-66. https://doi.org/10.1016/j.biomaterials.2010.01.065.

Herrera Ordóñez, Jorge. 2023. Controversies on the mechanism and kinetics of emulsion polymerization: an updated critical review. Advances in Colloid and Interface Science, 320(octubre): 103005. https://doi.org/10.1016/J.CIS.2023.103005.

Herrera Ordóñez, Jorge, Enrique Saldívar-Guerra y Eduardo Vivaldo-Lima. 2013. Dispersed-phase polymerization processes. En Enrique Saldívar-Guerra y Eduardo Vivaldo-Lima (eds.), Handbook of polymer synthesis, characterization, and processing. Hoboken, N. J., USA: John Wiley & Sons, Inc., 295-315. https://doi.org/10.1002/9781118480793.ch14.

Herrera Ordóñez, Jorge, Roberto Olvera‐Guillén, Gabriela Rocha‐Botello, Karla Juárez-Moreno y Martha Cruz‐Soto. 2023. Proceso de obtención de nanopartículas de polímero para la liberación de fármacos mediada por receptor. Patente de México No. 402024. Universidad Nacional Autónoma de México. Instituto Mexicano de la Propiedad Industrial.

Kaneo, Yoshiharu, Shiori Hashihama, Atsufumi Kakinoki, Tetsuro Tanaka, Takayuki Nakano y Yuka Ikeda. 2005. Pharmacokinetics and biodisposition of poly(vinyl alcohol) in rats and mice. Drug Metabolism and Pharmacokinetics, 20(6): 435-42. https://doi.org/10.2133/DMPK.20.435.

Kelly, C. M., C. C. DeMerlis, D. R. Schoneker y J. F. Borzelleca. 2003. Subchronic toxicity study in rats and genotoxicity tests with polyvinyl alcohol. Food and Chemical Toxicology, 41(5): 719-27. https://doi.org/10.1016/S0278-6915(03)00003-6.

Kettler, Katja, Karin Veltman, Dik van de Meent, Annemarie van Wezel y A. Jan Hendriks. 2014. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions y cell type. Environmental Toxicology and Chemistry, 33(3): 481-92. https://doi.org/10.1002/etc.2470.

Ledermann, J. A., S. Canevari y T. Thigpen. 2015. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Annals of Oncology, 26(10): 2034-43. https://doi.org/10.1093/annonc/mdv250.

Lesko, P. M. y P. R. Sperry. 1997. Acrylic and styrene-acrylic polymers. En Peter A. Lovell and Mohamed S. El-Aasser (eds.), Emulsion polymerization and emulsion polymers. Chichester, UK: John Wiley & Sons Ltd., 619-55.

Lovell, Peter A. y F. Joseph Schork. 2020. Fundamentals of emulsion polymerization. Biomacromolecules 619-55. 21(11): 4396-4441. https://doi.org/10.1021/acs.biomac.0c00769.

Lv, Shixian, Meilyn Sylvestre, Alexander N. Prossnitz, Lucy F. Yang y Suzie H. Pun. 2021. Design of polymeric carriers for intracellular peptide delivery in oncology applications. Chemical Reviews, 121(18): 11653-98. https://doi.org/10.1021/acs.chemrev.0c00963.

Mok, Zi Hong. 2024. The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances, 2(noviembre): 100031. https://doi.org/10.1016/j.pscia.2023.100031.

Narmani, Asghar, Melina Rezvani, Bagher Farhood, Parvaneh Darkhor, Javad Mohammadnejad, Bahram Amini, Soheila Refahi y Nouraddin Abdi Goushbolagh. 2019. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Development Research, 80(4): 404-24. https://doi.org/10.1002/ddr.21545.

Nel, Andre E., Lutz Mädler, Darrell Velegol, Tian Xia, Eric M. V. Hoek, Ponisseril Somasundaran, Fred Klaessig, Vince Castranova y Mike Thompson. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8(7): 543-57. https://doi.org/10.1038/nmat2442.

Nguyen, Luan N. M., Zachary P. Lin, Shrey Sindhwani, Presley MacMillan, Stefan M. Mladjenovic, Benjamin Stordy, Wayne Ngo y Warren C. W. Chan. 2023. The exit of nanoparticles from solid tumours. Nature Materials, 22(10): 1261-72. https://doi.org/10.1038/s41563-023-01630-0.

Olvera-Guillén, Roberto, Karla Juárez-Moreno, Martha Cruz-Soto, Gabriela Rocha-Botello y Jorge Herrera Ordóñez. 2021. Supramolecular poly(vinyl alcohol)-folate structure as functional layer and colloidal stabilizer of poly(vinyl acetate) nanoparticles with potential use as nanocarrier for hydrophobic antitumor agents. Journal of Nanoparticle Research, 23(6): 132. https://doi.org/10.1007/s11051-021-05241-1.

Ottewill, Ronald H. 1997. Stabilization of polymer colloids dispersions. En Peter A. Lovell y Mohamed S. El-Aasser (eds.), Emulsion polymers and emulsion polymerization. Londres: John Wiley & Sons Ltd., 59-121. https://www.wiley.com/en-mx/Emulsion+Polymerization+and+Emulsion+Polymers-p-9780471967460.

Patel, Siddharth, Renee C. Ryals, Kyle K. Weller, Mark E. Pennesi y Gaurav Sahay. 2019. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. Journal of Controlled Release, 303(junio): 91-100. https://doi.org/10.1016/j.jconrel.2019.04.015.

Pichot, C., T. Delair y A. Elaïssari. 1995. Polymer colloids for biomedical and pharmaceutical applications. En Polymeric dispersions: principles and applications. Dordrecht: Springer Netherlands, 515-539. https://doi.org/10.1007/978-94-011-5512-0_33.

Pulingam, Thiruchelvi, Parisa Foroozandeh, Jo-Ann Chuah y Kumar Sudesh. 2022. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials, 12(3): 576. https://doi.org/10.3390/nano12030576.

Rejman, Joanna, Volker Oberle, Inge S. Zuhorn y Dick Hoekstra. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1): 159-69. https://doi.org/10.1042/bj20031253.

Rivera-Hernández, Gabriela, Marilena Antunes-Ricardo, Patricia Martínez-Morales y Mirna L. Sánchez. 2021. Polyvinyl alcohol based-drug delivery systems for cancer treatment. International Journal of Pharmaceutics, 600(mayo): 120478. https://doi.org/10.1016/j.ijpharm.2021.120478.

Rivera M., Sánchez Bartez F., Gracia Mora I. 2022. Evaluación de nanopartículas en un xenotransplante de adenocarcinoma mamario MCF-7 a ratón desnudo (nu/nu). Informe de resultados, UNIPREC, Facultad de Química, UNAM.

Sadato, A., W. Taki, Y. Ikada, I. Nakahara, K. Yamashita, K. Matsumoto, M. Tanaka et al. 1994. Experimental study and clinical use of poly(vinyl acetate) emulsion as liquid embolisation material. Neuroradiology, 36(8): 634-41. https://doi.org/10.1007/BF00600429.

Sakai, Kiyofumi, Masayuki Fukuba, Yutaka Hasui, Kunihiko Moriyoshi, Takashi Ohmoto, Tokio Fujita y Tatsuhiko Ohe. 1998. Purification and characterization of an esterase involved in poly(vinyl alcohol) degradation by Pseudomonas vesicularis PD. Bioscience, Biotechnology, and Biochemistry, 62(10): 2000-2007. https://doi.org/10.1271/bbb.62.2000.

Sindhwani, Shrey, Abdullah Muhammad Syed, Jessica Ngai, Benjamin R. Kingston, Laura Maiorino, Jeremy Rothschild, Presley MacMillan et al. 2020. The entry of nanoparticles into solid tumours. Nature Materials, (enero). https://doi.org/10.1038/s41563-019-0566-2.

Solaro, Roberto, Andrea Corti y Emo Chiellini. 2000. Biodegradation of poly(vinyl alcohol) with different molecular weights and degree of hydrolysis. Polymers for Advanced Technologies, 11(8-12): 873-78. https://doi.org/10.1002/1099-1581(200008/12)11:8/12<873::AID-PAT35>3.0.CO;2-V.

Vauthier, Christine y Gilles Ponchel (eds.). 2016. Polymer nanoparticles for nanomedicines. Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-41421-8.

Zhou, Jikou, Carola Leuschner, Challa Kumar, Josef F. Hormes y Winston O. Soboyejo. 2006. Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials, 27(9): 2001-8. https://doi.org/10.1016/j.biomaterials.2005.10.013.