Trends in periodontal regeneration with the use of nanoparticles: a systematic review of the literature

Main Article Content

Diana Estefanía Vargas-Ruíz
https://orcid.org/0000-0001-8978-9279
Paloma Netzayeli Serrano-Díaz
https://orcid.org/0000-0001-9684-7991
Gabriela Hernández-Gómez
https://orcid.org/0000-0002-4436-4741
Laura Susana Acosta-Torres
https://orcid.org/0000-0002-5959-9113

Abstract

To carry out a systematic review of the literature to identify the types of nanoparticles and the effect they have on periodontal regeneration, a systematic review of the literature was carried out in the ScienceDirect, PubMed and SciELO databases. As inclusion criteria, the full-text original articles that included the use of nanoparticles (0-100 nm) for periodontal regeneration purposes published between 2016 and 2022 were taken into account. The search terms were “Periodontal regeneration AND nanoparticles AND dental materials”. 13 articles that met the inclusion and exclusion criteria were obtained and analyzed. nHA was found to have a high regenerative effect, followed by TiO2NPs, gold, calcium phosphate, chitosan, and iron oxide, among others. These NPs showed a periodontal regeneration effect for one to four weeks, mainly promoting osteoinduction, cytocompatibility, cell adherence, degradability, analgesia and biomineralization properties. Nanotechnology in the dental field is emerging as an attractive platform for advanced therapy in conjunction with dental biomaterials. In this review, it was found that nHA and TiO2NPs showed the best cellular response and in the shortest time to obtain regenerative results in periodontics in comparison to other NPs. There are still very few NPs analyzed for periodontal regeneration purposes, so their study is an emerging area. It is essential to recognize the possible limitations, consequences and adverse effects in short and long term, which must be studied in greater depth.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vargas-Ruíz, D. E., Serrano-Díaz, P. N., Hernández-Gómez, G., & Acosta-Torres, L. S. (2022). Trends in periodontal regeneration with the use of nanoparticles: a systematic review of the literature. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 16(30), 1e-12e. https://doi.org/10.22201/ceiich.24485691e.2023.30.69696
Section
Sección especial
Author Biography

Gabriela Hernández-Gómez, Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores Unidad León.

Professor and researcher of the Department of Periodontology and Implantology of the National School of Higher Studies León Unit of the National Autonomous University of Mexico.

References

Abdelaziz, D., Hefnawy, A., Al-Wakeel, E., El-Fallal, A. y El-Sherbiny, I. M. (2020). New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res, S2090-1232(20): 30123-5. https://doi.org/10.1016/j.jare.

Acevedo, C., Olguín, Y., Briceño, M., Forero, J., Osses, N., Díaz-Calderón, P., Jaques, A., Ortiz, R. (2019). Design of a biodegradable UV-irradiated gelatin-chitosan/ nanocomposed membrane with osteogenic ability for application in bone regeneration. Materials Science & Engineering C, 99: 875-886. https://doi.org/10.1016/j.msec.2019.01.135.

Castillo, G., Castillo, R., Terriza, A., Saffar, J., Batista, A., Lynch, C., Sloan, A., Gutié- rrez, J. y Torres, D. (2016). Pre-prosthetic use of poly (lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes. Journal of Dentistry, 47: 71-79. https://doi.org/10.1016/j.jdent.2016.01.015.

Dehnavia, S., Mehdikhanib, M., Rafieniac, M., Bonakdar, S. (2018). Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Materials Science & Engineering C, 90: 236-247. https://doi.org/10.1016/j.msec.2018.04.065.

Dumont, V., Mansur, H., Mansur, A., Carvalho, S., Capanema, N. y Barrioni, B. (2016). Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 93: 1465-1478. https://doi.org/10.1016/j.ijbiomac.2016.04.030Get.

Fahimipour, F., Bastami, F., Khoshzaban, A., Jahangir, S., Baghaban, M., Khayyatan, F., Safiaghdam, H., Sadooghi, Y., Safa, M., Jafarzadeh. T., Dashtimoghadam, E. y Tayebi, L. (2020). Critical-sized bone defects regeneration using a bone-inspired 3D bilayer collagen membrane in combination with leukocyte and platelet-rich fibrin membrane (L-PRF): An in vivo study. Tissue and CelL, 63: 101326. https://doi.org/10.1016/j.tice.2019.101326.

Huang, K., Chen, Y., Wang, C., Lin, Y., Wu, A., Shie, M., PhD, Lin, C. (2018). Enhanced capability of bone morphogenetic protein 2–loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells. Regenerative endodontics, 44(11): 1677-1685. https://doi.org/10.1016/j.joen.2018.08.008.

Ikono, R., Lid, N., Pratamaa, N., Vibrianie, V., Yuniarnif, D., Luthfansyaha, M., Bachtiarg, B., Bachtiarg, E., Muliah, K., Nasikinh, M., Kagamic, H., Lid, X., Mardliyatii, E., Rochmanj, N., Inouel, T., Tojo A. (2019). Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles. Biotechnology Reports, 24: e00350. https://doi.org/10.1016/j.btre.2019.e00350.

Lang, K. (2006). Periodontología clínica e implantología odontológica, 4a ed. Argentina: Panamericana.

Lee D, Jin S., Moon, J., Hyoung, J., Nyoung, D., Beum, Nam Lim, H., Keun, I. (2018). Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Journal of Industrial and Engineering Chemistry, 66: 196-202. https://doi.org/10.1016/j.jiec.2018.05.030.

Liaoa, S., Wanga, W., Uoa, M., Ohkawaa, S., Akasakaa T., Tamuraa, K., Cuib, F. y Wataria, F. (2005) A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials, 26: 7564-757. https://doi.org/10.1016/j.biomaterials.2005.05.050.

Lindhe J., y Lang J. (2015). Clinical periodontology and implant dentistry, vol. 2. EUA: John Wiley & Sons, Incorporated.

Masoudi, M., Nouri, S., Ghasemi, L., Prabhakaran, M., Reza, M., Kharaziha, M., Saadatkish, N. y Ramakrishna, S. (2017). Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Materials Science and Engineering, 80: 75-87. https://doi.org/10.1016/j.msec.2017.05.125.

Niklaus, P. Lang et al. (eds.) (2015). Clinical periodontology and implant dentistry, 2 vols. John Wiley & Sons, Incorporated.

Rad, M., Khorasani, S., Mobarakeh, L., Prabhakaran, M., Foroughi, M., Kharaziha, M., Saadatkish, N. y Ramakrishna S. (2017). Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Materials Science and Engineering, 80: 75-87. https://doi.org/10.1016/j.msec.2017.05.125.

Ren, Shuangshuang, Zhou, Y., Zheng, Kai, Xu, Xuanwen, Jie, Yang, Xiaoyu, Wang, Miao, Leiying, Wei, Hui, Xu, Yan. (2021). Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioactive Materials, 2452. https://doi.org/10.1016/j.bioactmat.2021.05.037.

Sánchez, Javier, Gaytan, César, Aguilera, Luis, Frausto, Silverio, Cepeda, Oscar. (2020). Implicaciones médico dentales de la nanotecnología y su toxicidad. Contexto odontologico,10: 13-19. https://doi.org/10.48775/rco.v10i19.944.

Sculean, A., Nikolidakis, D., Nikou, G., Ivanovic, A., Chapple, J. y Tavropoulos A. (2015). Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontology 2000, 68: 182-216. https://doi.org/10.1111/prd.12086.

Sigmund, S., Haffajee, A. (2006). Ecología microbiotal periodontal. Periodontology 2000, 12: 135-187.

Takahashi, C., Hattori, Y., Yagi, S., Murai, T., Tanemurae, M., Kawashima, Y. y Yamamotoa, H. (2019). Ionic liquid-incorporated polymeric nanoparticles as carriers for prevention and at an earlier stage of periodontal disease. Materialia, 8: 100395. https://doi.org/10.1016/j.mtla.2019.100395.

Tenkumo, T., Vanegas, J., Nakamura, K., Shimuzu, K., Sokolova, V., Epple, M., Kamano, Y., Egusa, H., Sugaya, T., Sasaki, T.(2018). Prolonged release of bone morphogenetic protein-2 in vivo by gene transfection with DNA-functionalized calcium phosphate nanoparticle-loaded collagen scaffolds. Materials Science & Engineering C, 92: 172-183. https://doi.org/10.1016/j.msec.2018.06.047.

Türkkan, S., Engin, A., Keskin, D., Machin, N., Duygulu, O. y Tezcaner, A. (2017). Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration. Materials Science & Engineering C, 80: 484-493. https://doi.org/10.1016/j.msec.2017.06.016.

Wang, M. y Wang, L. (2020). Plant polyphenols mediated synthesis of gold nanoparticles for pain management in nursing care for dental tissue implantation applications. J Drug Deliv Sci Technol, 58: 101753. https://doi.org/10.1016/j.jddst.2020.101753.

Xia, Y., Guoa, Y., Yanga, Z., Chena, H., Rend, K., Hael, W., Laurence, W., Reynoldsc, A., Zhanga, F. y Xu, H. (2019). Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. Materials Science & Engineering C, 104: 109955. https://doi.org/10.1016/j.msec.2019.109955.